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Abstract

This paper studies a nonlinear control policy for multi-period investment. The nonlinear
strategy we develop is categorized as a kernel method, but solving large-scale instances
of the resulting optimization problem in a direct manner is computationally intractable in
the literature. In order to overcome this difficulty, we employ a dimensionality reduction
technique which is often used in principal component analysis. Numerical experiments show
that our strategy works not only to reduce the computation time, but also to improve out-
of-sample investment performance.

Keywords: Multi-period portfolio selection, Kernel method, Control policy, Dimensionality
reduction

1 Introduction

Risk management based on diversified investment makes it possible to mitigate the risk of suffer-

ing a large loss while securing a certain level of profitability, and portfolio selection accordingly

plays an important role in financial decision making (see, e.g., Cornuejols and Tütüncü [5]).

Portfolio selection is usually conducted in a single-period framework, as initially formulated by

Markowitz [14]. It is, however, advantageous for investors to periodically adjust their portfolios

by following an effective rebalancing strategy. In this respect, the traditional single-period model

is not sufficient. Indeed, Mulvey et al. [17] state that multi-period models can enhance risk-

adjusted performance and help investors evaluate the probability of reaching a certain target by

linking asset and liability policies.

Among the various rebalancing strategies, constant rebalancing reverts the investment pro-

portion to the original proportion at the beginning of every period. It is known that a constant

rebalancing strategy achieves the optimal growth rate of wealth on the assumption that asset re-

turns in each period are independent and identically distributed (see, e.g., [1]). Due to this fact,

a number of studies (see, e.g., [7, 15, 25, 27]) have dealt with multi-period portfolio optimization

with the constant rebalancing strategy.

However, it has been demonstrated, e.g., in [12, 13], that stock returns are serially depen-

dent; therefore, it is probably effective to dynamically rebalance the portfolio in view of the

observed asset returns. For instance, DeMiguel et al. [6] improve the out-of-sample investment

performance of single-period models by predicting future stock returns through the use of a
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vector autoregressive (VAR) model. More importantly, Fleten et al. [7] have shown by means of

an out-of-sample simulation test that the stochastic dynamic approach dominates the constant

rebalancing strategy. These observations motivated us to develop a rebalancing strategy for

exploiting the time-series dependence of stock returns.

Multi-period portfolio selection was first framed as a stochastic control problem (see Infanger

[10] for detailed references). In general, however, it is very difficult to handle a stochastic control

problem of a practical size because it requires one to solve a large-scale dynamic programming

problem or partial differential equations. Consequently, a number of studies have focused on

mathematical optimization approaches with an appropriate uncertainty modeling. Among them

the simulated path model (see, e.g., Hibiki [9]) describes multi-period scenarios of asset returns

using a number of simulated paths. The actual market behavior can be simulated in detail by

this model, but there is no room for conditional investment decisions in this model due to what

is called the “non-anticipativity condition,” which requires one to prevent investment decisions

from depending on future observations on each simulated path. By contrast, the scenario tree

model (see Steinbach [24] for detailed references) enables one to make conditional investment

decisions in each future state; however, this model is disadvantageous in that the size of the

resultant optimization problem grows exponentially as the number of time periods increases.

The hybrid model devised by Hibiki [8] integrates the simulated path model and the scenario

tree model; nevertheless, it is still computationally burdensome to make conditional investment

decisions in the hybrid model as well as in the scenario tree model.

In view of these facts, we shall utilize a control policy, which maps past outcomes to the

investment amount to be rebalanced. While the control policy enables one to make conditional

investment decisions, determining the best control policy generally leads to a computationally

intractable optimization. Accordingly, most studies (e.g., [2, 3, 4, 16, 19, 22]) have dealt with a

restricted class of control policies, e.g., affine functions of the past outcomes.

On the other hand, the authors of this paper build in [26] a computational framework based

on the kernel method for finding the best nonlinear control policy in the simulated path model.

Such a kernel method is often employed in estimating nonlinear statistical models in machine

learning (see, e.g., Schölkopf and Smola [23]), and it allows one to treat a highly nonlinear

transformation in the feature space efficiently. Numerical experiments in [26] show that a model

with this kernel-based control policy performs better than other models.

However, we are yet confronted by two difficulties in using the kernel-based control policy:

long computation time and overfitting. Indeed, the experiments in [26] show that substantial

time is required even for small problems, despite the fact that the problem is formulated as a

convex quadratic programming problem. In addition, since the kernel approach admits a highly

nonlinear mapping, the resulting control policy may overfit the scenarios used in the optimization

problem and consequently weaken its out-of-sample performance.

The purpose of this paper is to devise an approach for efficiently solving the multi-period

portfolio selection problem with a kernel-based control policy [26] and for further improving

its investment performance. To this end, a method of problem reduction is posed based on a
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dimensionality reduction technique which is often used in principal component analysis (PCA).

More precisely, our application is directly related to what is called kernel principal component

analysis (kernel PCA), which is an extension of PCA into a feature space of (possibly, infinitely)

high dimension (see, e.g., Schölkopf and Smola [23]). Yajima et al. [28] use a dimensionality

reduction technique to reduce the problem size of a nonlinear support vector machine. Their

results encouraged us to apply a similar reduction method to our multi-period portfolio selection

problem. In addition, it has been demonstrated in the context of regression analysis that kernel

PCA has an effect of de-noising (see, e.g., [11, 20]). This means that kernel PCA has the

potential of not just achieving a high degree of computation efficiency, but also improving

investment performance.

The rest of the paper is organized as follows: In Section 2, we present a multi-period port-

folio selection model equipped with a kernel-based control policy. In Section 3, we develop a

method for reducing the problem size by means of eigenvalue decomposition and formulate an

optimization problem in a reduced form. In Section 4, numerical experiments show that our

optimization model sharply lessened the computation time without worsening investment per-

formance. Furthermore, our optimization-based approach avoided overfitting, and accordingly,

it enhanced out-of-sample investment performance in certain situations. Finally, conclusions are

given in Section 5.

2 Control Policy for Multi-Period Portfolio Selection

In this section, after giving a mathematical description of portfolio dynamics, we formulate the

multi-period portfolio selection problem with a kernel-based nonlinear control policy.

2.1 Preliminaries and portfolio dynamics

The terminology and notation used in this subsection are as follows:

Index Sets

I := {1, 2, ..., I} : index set of investable financial assets (where asset 1 is cash)

S := {1, 2, ..., S} : index set of given scenarios (or simulated paths)

T := {1, 2, ..., T} : index set of planning time periods
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Decision Variables

xi,s(t) : investment amount in asset i at the end of period t in scenario s

(i ∈ I, s ∈ S, t ∈ T )

ui(t) : adjustment of asset i at the beginning of period t (i ∈ I, t ∈ T )

ui,s(t) : adjustment of asset i at the beginning of period t in scenario s

(i ∈ I, s ∈ S, t ∈ T \ {1})

vs(t) : portfolio value at the end of period t in scenario s (s ∈ S, t ∈ T )

a(t) : the value-at-risk (VaR) in period t (t ∈ T )

zs(t) : auxiliary decision variable for calculating the conditional value-at-risk (CVaR)

in period t (s ∈ S, t ∈ T )

Given Constants

x̄i(0) : the initial holdings of asset i (i ∈ I)

C(t) : net cash flow at the beginning of period t (t ∈ T )

Ri,s(t) : total return of asset i in period t in scenario s (i ∈ I, s ∈ S, t ∈ T )

Ps : occurrence probability of scenario s (s ∈ S)

Li, Ui : lower and upper limits of the investment proportion in asset i (i ∈ I)

User Defined Parameters

α : the trade-off parameter between profitability and risk (where α ∈ (0, 1))

β : the confidence level of the CVaR (where β ∈ (0, 1))

η(t) : weight of the expected portfolio value at the end of period t (where η(t) ≥ 0)

(t ∈ T )

θ(t) : weight of the CVaR in period t (where θ(t) ≥ 0) (t ∈ T )

Functions

γi : transaction cost function of asset i (where γi : R → R+) (i ∈ I)

Figure 1 illustrates the portfolio dynamics in a scenario s. We assume that one has an initial

portfolio x̄i(0), i ∈ I. If the investor has no initial holdings, x̄i(0) can be set to 0 for all i ∈ I.

One adjusts the portfolio at the beginning of each period as follows:

x+i (0) := x̄i(0) + ui(1),

x+i,s(t− 1) := xi,s(t− 1) + ui,s(t), t ∈ T \ {1}.
(1)

The investment amount changes over the period due to the changing price of each asset.

Specifically, by multiplying the investment amount by the total return, we derive the following
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investment

amount:

period

period

portfolio

value:

=
=

rebalancingtotal return

total return

Figure 1: Portfolio dynamics in scenario s

portfolio dynamics equations:

xi,s(1) = Ri,s(1)x
+
i (0) = Ri,s(1) (x̄i(0) + ui(1)) ,

xi,s(t) = Ri,s(t)x
+
i,s(t− 1) = Ri,s(t) (xi,s(t− 1) + ui,s(t)) , t ∈ T \ {1}.

(2)

The portfolio value at the end of period t ∈ T in scenario s is the sum of investments:

vs(t) =
∑
i∈I

xi,s(t),

and therefore, the expected portfolio value at the end of period t ∈ T is
∑

s∈S Psvs(t).

In addition, the adjustments must satisfy the following cash flow balance equations in each

period:∑
i∈I

ui(1) = C(1)−
∑
i∈I

γi(ui(1)),∑
i∈I

ui,s(t) = C(t)−
∑
i∈I

γi(ui,s(t)), t ∈ T \ {1}.
(3)

When a self-financing strategy is employed, the net cash flow C(t) is set to 0 for all t ∈ T , and

the equations (3) imply that the sum of sales is equal to the sum of purchases and transaction

costs. In this paper, we consider only a linear transaction cost. Specifically, it is assumed that

τbuyi and τ selli are transaction costs per unit for buying and selling asset i, respectively. Then

by introducing auxiliary decision variables, ubuy and usell, the transaction cost function of an

adjustment u can be represented with the following linear constraints:

γi(u) = τbuyi ubuy + τ selli usell, u = ubuy − usell, ubuy ≥ 0, usell ≥ 0.

Moreover, we impose constraints on the investment proportion (1) right after rebalancing:

Li
∑
j∈I

(x̄j(0) + uj(1)) ≤ x̄i(0) + ui(1) ≤ Ui
∑
j∈I

(x̄j(0) + uj(1)) ,

Li
∑
j∈I

(xj,s(t− 1) + uj,s(t)) ≤ xi,s(t− 1) + ui,s(t) ≤ Ui
∑
j∈I

(xj,s(t− 1) + uj,s(t)) , t ∈ T \ {1}.
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Figure 2: Value-at-risk and conditional value-at-risk

(4)

In this paper, we shall use the expected portfolio value as a measure of profitability and

the conditional value-at-risk (CVaR) as a measure of risk. It is well known that the CVaR

has desirable computational and theoretical properties (see, e.g., [18, 21] for the details). β-

CVaR can approximately be regarded as the conditional expectation of a random loss exceeding

the β-value-at-risk (β-VaR), which is the β-quantile of the random loss (see Figure 2). Now

the random loss is defined as the negative of the portfolio value at the end of period t, i.e.,

−vs(t), and the corresponding CVaR in each period is the optimal value of the following linear

optimization problem (see [21]):

min
a(t), zs(t)

{
a(t) +

1

1− β

∑
s∈S

Pszs(t)

∣∣∣∣∣ zs(t) ≥ −vs(t)− a(t), zs(t) ≥ 0, s ∈ S

}
.

To take into account the investment performance in all periods, we minimize the following

weighted sum of the measures of profitability and risk:

(1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
︸ ︷︷ ︸

(5. a)

−α
∑
t∈T

η(t)
∑
s∈S

Psvs(t)︸ ︷︷ ︸
(5.b)

. (5)

2.2 Optimization of nonlinear control policy

The next thing we need to do is establish an effective rebalancing strategy for adjusting the

portfolio. For this purpose, we shall use the control policy for making conditional investment

decisions.

By following the previous studies [2, 3, 4], we define the control policy Fi,t as a function of

the past investment amount and the past total return. Specifically, the adjustments ui,s(t) are

determined as follows:

ui,s(t) = Fi,t (xs(t− 1),Rs(t− 1)) , t ∈ T \ {1}, (6)
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where xs(t) := (xi,s(k); i ∈ I, 1 ≤ k ≤ t) and Rs(t) := (Ri,s(k); i ∈ I, 1 ≤ k ≤ t). Note that

the function Fi,t itself is independent of the scenario s, whereas the adjustments ui,s(t) are

dynamically determined depending on the past outcomes xs(t− 1) and Rs(t− 1). As a result,

we can make conditional investment decisions corresponding to each scenario.

We can, however, omit the past investment amounts, xs(t− 1), from the control policies (6)

and accordingly use the following control policies:

ui,s(t) = Fi,t (Rs(t− 1)) , t = T \ {1} (7)

because it has been shown in [4, 26] that the above control policies (6) and (7) have the same

capability to create investment strategies.

More specifically, we shall consider a control policy of the form,

ui,s(t) = ui(t) +wi(t)
⊤ϕi,t (Rs(t− 1)) , t = T \ {1}, (8)

where ϕi,t are nonlinear mappings from the original space RI×(t−1) to a high-dimensional feature

space RNi,t , and wi(t) are decision variables representing the weight of the associated feature.

After the fashion of machine learning, we call the image of the mapping a feature vector. A

simple example of features would be the polynomials of the total return in the period t− 1:

ϕi,t (Rs(t− 1)) = (Ri,s(t− 1), Ri,s(t− 1)2, . . . , Ri,s(t− 1)Ni,t)⊤. (9)

Note that the feature vector may be excessively nonlinear and, accordingly, so may the policy

(9). In order for the policy not to overfit the total returns, Ri,s(t), we add regularization terms,

∥wi(t)∥2, to be minimized.

We can now formulate the multi-period portfolio selection problem with nonlinear control
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policies (8):

minimize
a(t), ui(t)

ui,s(t), vs(t)

wi(t), xi,s(t)
zs(t)

(1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t)

+λ
∑

i∈I\{1}

∑
t∈T \{1}

∥wi(t)∥2 · · · (10. a)

subject to zs(t) ≥ −vs(t)− a(t), zs(t) ≥ 0, s ∈ S, t ∈ T · · · (10. b)

xi,s(1) = Ri,s(1) (x̄i(0) + ui(1)) , i ∈ I, s ∈ S · · · (10. c)

xi,s(t) = Ri,s(t) (xi,s(t− 1) + ui,s(t)) , i ∈ I, s ∈ S, t ∈ T \ {1} · · · (10. d)

vs(t) =
∑
i∈I

xi,s(t), s ∈ S, t ∈ T · · · (10. e)∑
i∈I

ui(1) = C(1)−
∑
i∈I

γi(ui(1)) · · · (10. f)∑
i∈I

ui,s(t) = C(t)−
∑
i∈I

γi(ui,s(t)), s ∈ S, t ∈ T \ {1} · · · (10. g)

Li

∑
j∈I

(x̄j(0) + uj(1)) ≤ x̄i(0) + ui(1) ≤ Ui

∑
j∈I

(x̄j(0) + uj(1)) , i ∈ I · · · (10. h)

Li

∑
j∈I

(xj,s(t− 1) + uj,s(t)) ≤ xi,s(t− 1) + ui,s(t) ≤ Ui

∑
j∈I

(xj,s(t− 1) + uj,s(t)) ,

i ∈ I, s ∈ S, t ∈ T \ {1} · · · (10. i)

ui,s(t) = ui(t) +wi(t)
⊤ϕi,t (Rs(t− 1)) , i ∈ I \ {1}, s ∈ S, t ∈ T \ {1},

· · · (10. j)
(10)

where λ > 0 is a trade-off parameter that controls the balance between the regularization term

and the investment performance, which consists of the sum of the CVaR and the expected

portfolio value. Note that the adjustments of cash, u1,s(t), are uniquely determined from the

adjustments of other assets through the cash flow balance equations (10. g). Therefore, as seen

from (10. j), the control policy is not used to rebalance the cash (asset 1).

The above optimization problem is a convex quadratic optimization problem. Nevertheless,

the main difficulty is that the feature vectors, ϕi,t (Rs(t− 1)), need to be fixed before solving

problem (10). It is not clear, in advance, what nonlinear term of Rs(t− 1) will improve invest-

ment performance. Thus, to guarantee a high standard of investment performance, a variety

of nonlinear terms need to be included in the feature vectors. As is clear from (9), infinite-

dimensional feature vectors (i.e., Ni,t = ∞) are necessary to create all nonlinear functions by

using ϕi,t. Unfortunately, however, problem (10) is extremely difficult to solve when Ni,t is very

high.

To overcome this difficulty, the authors in [26] employed the kernel method, which is a

class of algorithm for analyzing nonlinear data in machine learning (see, e.g., [23]). The kernel

method enables us to determine an optimal control policy (8) without explicitly computing in a

high-dimensional feature space.
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Let Ki,ℓ,s(t) be the kernel functions:

Ki,ℓ,s(t) := ϕi,t (Rℓ(t− 1))⊤ϕi,t (Rs(t− 1)) . (11)

We then use the following theorem:

Theorem 2.1 (Representer theorem [23]) Let w∗
i (t) be optimal solutions to the problem

(10). Then there exist ei,s(t), i ∈ I \ {1}, s ∈ S, t ∈ T \ {1} such that

w∗
i (t)

⊤ϕi,t (Rs(t− 1)) =
∑
ℓ∈S

ei,ℓ(t)Ki,ℓ,s(t), i ∈ I \ {1}, s ∈ S, t ∈ T \ {1}.

Proof. See Theorem 3.1 in Takano and Gotoh [26]. ■

Theorem 2.1 states that the optimal adjustments, u∗i,s(t), can be computed without any

concern about the nature of the feature vectors.

Noting that the regularization terms in the problem (10) can be expressed as

λ
∑

i∈I\{1}

∑
t∈T \{1}

∥wi(t)∥2 = λ
∑

i∈I\{1}

∑
t∈T \{1}

∑
ℓ∈S

∑
s∈S

ei,ℓ(t) ei,s(t)Ki,ℓ,s(t) (12)

(see [26] for the details), we can rewrite problem (10) as follows:

minimize
a(t), ei,s(t)

ui(t), ui,s(t)

vs(t), xi,s(t)
zs(t)

(1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t)

+λ
∑

i∈I\{1}

∑
t∈T \{1}

∑
ℓ∈S

∑
s∈S

ei,ℓ(t) ei,s(t)Ki,ℓ,s(t) · · · (13. a)

subject to (10. b), . . . , (10. i)

ui,s(t) = ui(t) +
∑
ℓ∈S

ei,ℓ(t)Ki,ℓ,s(t), i ∈ I \ {1}, s ∈ S, t ∈ T \ {1}. · · · (13. b)

(13)

Note that the kernel function (11) constructs a Gram matrix, which is a positive semidefinite

symmetric matrix. Therefore, problem (13) is a convex quadratic optimization.

Among the various kernel functions proposed in the literature (see, e.g., [23]), the most

popular is the Gaussian kernel:

Ki,ℓ,s(t) = exp

−

∑
j∈I

t−1∑
k=1

(Rj,ℓ(k)−Rj,s(k))
2

σ2
i,t

 , (14)

where σi,t are user-defined parameters. It is known that the Gaussian kernel corresponds to an

inner product in an infinite-dimensional feature space (see, e.g., [23]). Therefore, solving problem

(13) with the Gaussian kernel (14) is equivalent to solving problem (10) with infinite-dimensional

feature vectors.
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3 Dimensionality Reduction Technique

As indicated in the previous section, the use of an adequate kernel function leads to a convex

optimization. Nevertheless, the kernel function (11) makes the problem structure worse, or

more specifically, the associated coefficient matrix of the linear constraints becomes dense. As a

result, problem (13) requires a long computation time in many cases. In this section, we present

a dimensionality reduction technique for solving our multi-period portfolio optimization problem

efficiently.

To begin with, let us rewrite the control policies (13. b) as follows:

ui(t) = ui(t)1+Ki(t) ei(t), i ∈ I \ {1}, t ∈ T \ {1}, (15)

where

ui(t) := (ui,1(t), ui,2(t), . . . , ui,S(t))
⊤ ∈ RS , 1 := (1, 1, . . . , 1)⊤ ∈ RS ,

Ki(t) :=


Ki,1,1(t) Ki,2,1(t) · · · Ki,S,1(t)

Ki,1,2(t) Ki,2,2(t) · · · Ki,S,2(t)
...

...
. . .

...

Ki,1,S(t) Ki,2,S(t) · · · Ki,S,S(t)

 ∈ RS×S , (16)

ei(t) := (ei,1(t), ei,2(t), . . . , ei,S(t))
⊤ ∈ RS .

Recall that Ki(t) is a positive semidefinite symmetric matrix, which has only nonnegative eigen-

values.

Suppose that the matrixKi(t) has S̄ positive eigenvalues. Furthermore, let λi,1(t) ≥ λi,2(t) ≥
· · · ≥ λi,S̄(t) > 0 be the positive eigenvalues of the matrix Ki(t) and di

1(t),d
i
2(t), . . . ,d

i
S̄
(t) ∈ RS

be the associated normalized eigenvectors. Then, the matrix Di(M ; t) for a positive integer

M (≤ S̄) is defined as

Di(M ; t) :=

(√
λi,1(t)d

i
1(t),

√
λi,2(t)d

i
2(t), . . . ,

√
λi,M (t)di

M (t)

)
∈ RS×M , (17)

so that Ki(t) can be decomposed as Ki(t) = Di(S̄; t)Di(S̄; t)⊤.

When M < S̄, the kernel-based control policy (15) can be approximated as follows:

ui(t) = ui(t)1+Di(S̄; t)Di(S̄; t)⊤ei(t)

≈ ui(t)1+Di(M ; t)Di(M ; t)⊤ei(t)

= ui(t)1+Di(M ; t)yi(t),

where yi(t) := Di(M ; t)⊤ei(t) ∈ RM .
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Additionally, the regularization term in problem (13) is transformed as follows:∑
ℓ∈S

∑
s∈S

ei,ℓ(t) ei,s(t)Ki,ℓ,s(t) = ei(t)⊤Ki(t) ei(t)

= ei(t)⊤Di(S̄; t)Di(S̄; t)⊤ei(t)

≈ ei(t)⊤Di(M ; t)Di(M ; t)⊤ei(t)

= yi(t)⊤yi(t)

Finally, by treating yi(t) = (yi,1(t), yi,2(t), . . . , yi,M (t))⊤ as new decision variables, problem

(13) can be reduced to an approximation problem:

minimize
a(t), ui(t)

ui,s(t), vs(t)

xi,s(t), yi,m(t)
zs(t)

(1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t)

+λ
∑

i∈I\{1}

∑
t∈T \{1}

M∑
m=1

yi,m(t)2 · · · (18. a)

subject to (10. b), ..., (10. i)

ui,s(t) = ui(t) +
M∑

m=1

Di,s,m(M ; t) yi,m(t),

i ∈ I \ {1}, s ∈ S, t ∈ T \ {1}, · · · (18. b)

(18)

where the (s,m)-th entry of Di(M ; t) is denoted by Di,s,m(M ; t). We should also notice that

reasonable performance can be attained by setting M to 0.02× S in the context of the kernel-

based support vector machine (see Yajima et al. [28]).

In what follows, we show another representation of Di,s,m(M ; t), which is closely related to

kernel PCA (see, e.g., Schölkopf and Smola [23]). It follows from the definition that

Ki(t)di
m(t) = λi,m(t)di

m(t),

or equivalently,∑
ℓ∈S

Ki,ℓ,s(t) di,ℓ,m(t) = λi,m(t) di,s,m(t), s ∈ S. (19)

Accordingly, we have

Di,s,m(M ; t)
(17)
=
√

λi,m(t) di,s,m(t)

(19)
=
√

λi,m(t) ·

∑
ℓ∈S

Ki,ℓ,s(t) di,ℓ,m(t)

λi,m(t)

=
∑
ℓ∈S

di,ℓ,m(t)√
λi,m(t)

· Ki,ℓ,s(t).

(20)

4 Numerical Experiments

The numerical results reported in this section demonstrate how our approach works. We used

two datasets, 4FF and 3IND (see Appendix A for the details), and considered a planning horizon
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of five periods (i.e., T = 5). The initial holdings were set as x̄1(0) := 100 and x̄i(0) := 0 for

i ∈ I \ {1}. The lower limit, Li, of the investment proportion was set to 0 for all i ∈ I. The

upper limit, Ui, of the investment proportion was set to 0.5 for i ∈ I \ {1}, and U1 was set to

0.2 to avoid over-investing in cash. The net cash flow, C(t), was 0 for all t ∈ T . The occurrence

probability, Ps, was 1/S for all s ∈ S and the confidence level, β, was 0.9. The weights, θ(t)

and η(t), of the CVaR (5. a) and the expected portfolio value (5. b) were set as θ(T ) = η(T ) = 1

and θ(t) = η(t) = 0 for t ∈ T \ {T}. The transaction costs, τbuyi and τ selli , were equally set as

τbuy1 = τ sell1 = 0 for cash and τbuyi = τ selli = τ ∈ {0, 0.005, 0.01} for i ∈ I \ {1}. We employed

the Gaussian kernel (14) and set the associated parameter value as

σi,t :=

√√√√2(t− 1)
1

S

∑
ℓ∈S

(
rℓ(t)−

1

S

∑
s∈S

rs(t)

)2

on the basis of the standard deviation of rs(t) :=
√∑

i∈I(Ri,s(t))2.

4.1 Scenario generation

Along the lines of Cornuejols and Tütüncü (Section 16.5.1, [5]), to capture the serial depen-

dence of stock returns, we used the vector autoregressive (VAR) model for scenario generation.

Specifically, we randomly generated scenarios of the total returns, Ri,s(t), by using the following

model:

r(t) = δ +Ψ r(t− 1) + ε(t), (21)

where r(t) ∈ RI−1 is the vector of the rate of returns, i.e., Ri,s(t) − 1, i ∈ I \ {1}; the vector

of intercepts δ ∈ RI−1 and the matrix of coefficients Ψ ∈ R(I−1)×(I−1) are parameters to be

estimated; and ε(t) is the vector of random errors, which is independently and identically dis-

tributed with respect to t ∈ T . It is assumed that ε(t) follows a multivariate normal distribution

with zero mean and variance-covariance matrix Σ. Note that asset 1 was cash and R1,s(t) were

accordingly set to 1 for all s ∈ S and t ∈ T . The estimated parameter values of the VAR model

(21) are shown in Appendix A

4.2 Models for comparison

The numerical experiments assessed the efficiency of the following models:

• Basic does not use control policies. Specifically, it is an optimization model (10. a),...,(10. i)

with the non-anticipativity condition (i.e., all ui,s(t) are replaced by ui(t)) and λ = 0.

• Linear uses linear control policies. Specifically, it is an optimization model (10. a),...,(10. i)

with the following constraints:

ui,s(t) = ui(t)+

t−1∑
k=1

∑
j∈I

wi,j(k, t)

(
Rj,s(k)−

∑
ℓ∈S

PℓRj,ℓ(k)

)
, i ∈ I \{1}, s ∈ S, t ∈ T \{1},



Multi-Period Portfolio Selection Using Control Policy 13

(22)

where λ = 0 and wi,j(k, t) are decision variables representing linear feedback from past

total returns.

• KerDR(M) is our model (18) that uses kernel-based control policies with the dimensionality

reduction technique. M represents the number of eigenvectors used in the model.

• Kernel is an optimization model (13) that uses kernel-based control policies, but not the

dimensionality reduction technique.

4.3 Investment performance

This subsection compares the in-sample and out-of-sample investment performance of each model

(see Appendix B for a description of the performance evaluation methodology). Figures 3, 4 and

5 show the efficient frontiers of the solutions to the optimization models in Section 4.2. In these

figures, the horizontal axis and vertical axis are the expected portfolio value (5. b) and CVaR

(5. a), respectively. Each plot on the frontier corresponds to a different value of the trade-off

parameter, α ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}.

Figures 3 and 4 show the investment performance in 300 scenarios (i.e., S = 300) when

there are no transaction costs (i.e., τ = 0). Figures 3 and 4 are associated with the 4FF

dataset and 3IND dataset, respectively. The in-sample performance ((a), (c), (e)) of KerDR(M)

became better as the number of used eigenvectors, M , got larger. In particular, the in-sample

performance of KerDR(10) was similar to that of Linear, and the in-sample performance of

KerDR(100) was similar to that of Kernel. In addition, we can see from these figures that

the in-sample performances of KerDR(M) and Kernel improve as the value of the regularization

parameter, λ, decreases. We can conclude that as far as the in-sample performance is concerned,

Kernel with λ = 10−6 performed the best (see Figures 3(a) and 4(a)).

As for the out-of-sample performance ((b), (d), (f)), Kernel with λ = 10−6 got drastically

worse (see Figures 3(b) and 4(b)). This poor result is because of overfitting; that is, the kernel-

based control policy overfitted the scenarios used in the optimization problem and therefore

was not effective in other scenarios. By contrast, the figures indicate that KerDR(10) and

KerDR(30) generally had good out-of-sample performance regardless of the value of λ. Although

the number of eigenvectors, M , can be up to S=300, these observations confirmed that only

10 or 30 eigenvectors were necessary to enable KerDR(M) to have an investment performance

comparable to Kernel. Meanwhile, whereas Linear performed well in Figure 3, it performed

poorly in Figure 4, and this deterioration was also caused by overfitting.

Now let us move on to Figure 5, which shows the out-of-sample investment performance

in 1,000 scenarios (i.e., S = 1,000). Here, the regularization parameter, λ, was set to 10−5,

and the transaction cost was set to 0% (i.e., τ = 0), 0.5% (i.e., τ = 0.005) and 1% (i.e.,

τ = 0.01). We can see that large transaction costs made the expected portfolio value significantly

worse. For instance, although most solutions had the expected portfolio value of over 103 in
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Figure 3: Efficient frontier (4FF dataset, S = 300, τ = 0; see also Section 4.2)
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Figure 4: Efficient frontier (3IND dataset, S = 300, τ = 0; see also Section 4.2)
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Figure 5: Efficient frontier (out-of-sample, S = 1,000, λ = 10−5; see also Section 4.2)
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Figure 5(b), no model obtained a value of 103 in Figure 5(f). Consequently, the difference in

investment performance among these models became smaller as the transaction costs increased.

Nevertheless, we found, even in the presence of a transaction cost, that Linear performed better

than Basic, and that KerDR(30) and KerDR(50) performed better than Linear.

4.4 Computation time

Tables 1 and 2 report the average computation times of solving seven optimization problems for

each value of the trade-off parameter, α ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. All computations

were conducted on a Windows 7 personal computer with a Core i5 Processor (2.40GHz) and

8GB memory. Also, FICO Xpress1 was used to solve the optimization problems. In the case

of 300 scenarios, the out-of-sample performances of KerDR(10) and KerDR(30) were better than

or equal to Kernel, as shown in Figures 3 and 4. Moreover, KerDR(10) and KerDR(30) sharply

reduced the computation time compared with Kernel (see Table 1).

In the case of 1,000 scenarios (see Table 2), on the other hand, the computation time of

solving Kernel was over one hour; accordingly, there was no efficient frontier of solutions to

Kernel in Figure 5. By contrast, it took less than one minute to solve KerDR(10), KerDR(30)

and KerDR(50). We should also recall that these models had a relatively good investment

performance.

Table 1: Average computation time [sec.] (S = 300, τ = 0; see also Section 4.2)

4FF dataset 3IND dataset

Basic 0.5 0.4

Linear 1.6 0.8

λ = 10−6 λ = 10−5 λ = 10−4 λ = 10−6 λ = 10−5 λ = 10−4

KerDR(10) 2.3 2.3 2.3 1.3 1.3 1.3

KerDR(30) 4.3 4.2 4.5 2.4 2.3 2.4

KerDR(100) 29.5 29.3 33.2 11.3 11.6 12.9

Kernel 31.1 29.0 32.8 13.8 15.2 15.3

4.5 Investment amounts

Figures 6 and 7 show the box plots of the investment amounts, xi,s(t), of each model. The

plots display the distribution of {xi,s(t) | s ∈ S} for each asset i ∈ I and each period t ∈ T .

These results show that the investment amounts of Linear and KerDR(30) had a lower dispersion

in the presence of transaction costs ((d), (f)) than with no transaction costs ((c), (e)). In the

presence of transaction costs, it costs a lot to actively rebalance a portfolio, and the investment

1http://www.fico.com/en
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Table 2: Average computation time [sec.] (S = 1,000, λ = 10−5; see also Section 4.2)

4FF dataset 3IND dataset

τ = 0 τ = 0.005 τ = 0.01 τ = 0 τ = 0.005 τ = 0.01

Basic 2.7 3.1 2.7 2.0 2.4 2.7

Linear 9.1 23.2 20.7 5.6 11.4 12.5

KerDR(10) 9.4 14.7 15.8 5.1 11.8 12.0

KerDR(30) 20.2 28.8 29.9 9.9 21.5 21.6

KerDR(50) 43.4 60.0 61.1 17.8 43.6 41.8

Kernel >3,600 >3,600 >3,600 >3,600 >3,600 >3,600

amounts accordingly fluctuate within a small range. When there are no transaction costs ((a),

(c), (e)), the investment amounts of Linear and KerDR(30) are spread wider than those of Basic.

Furthermore, KerDR(30) invested in assets that were not invested in by the other models (see

assets 2 and 4 in Figure 6(b), (d), (f), and asset 4 in Figure 7). This is probably because

the kernel-based control policy exploits to the full the time-series dependence of asset returns,

and accordingly, can make a profit by investing in seemingly unprofitable assets (see also the

estimated parameter values in Appendix A).

5 Conclusions

The present paper studied the kernel-based nonlinear control policies in a multi-period port-

folio selection model. The dimensionality reduction technique was used therein to reduce the

computational burden.

Numerical experiments were carried out to assess the computational advantages of our re-

duced optimization model and to compare the investment performance of our model with those

of other models. The results show that our reduced optimization model could prevent the kernel-

based control policy from overfitting. As a result, our model had high out-of-sample investment

performance in comparison with the other models. Moreover, the results demonstrated that

our reduced optimization model could decrease the computation time required for optimizing

the kernel-based control policy. Additionally, the investment amounts of each model illustrated

some features of investment strategies based on control policies.

There is, however, much work left to be done. For practical purposes, we need to solve

portfolio selection problems involving hundreds or thousands of investable assets. A large number

of assets requires a larger number of scenarios for preventing overfitting; thus, a future direction

of study will be to devise a method for solving such large-scale problems.
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Figure 6: Investment amounts (4FF dataset, S = 1,000, λ = 10−5, α = 0.7; see also Section 4.2)
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Figure 7: Investment amounts (3IND dataset, S = 1,000, λ = 10−5, α = 0.7; see also Section
4.2)
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Appendix

A Datasets and Estimated Parameter Values

Tables A.1 and A.2 show the details of the datasets used in numerical experiments of Section

4. The estimated parameter values of the VAR model (21) were

δ =


0.0057

0.0076

0.0040

0.0026

 , Ψ =


−0.11 −0.34 0.86 0.08

−0.37 0.02 0.83 0.09

−0.06 −0.14 0.46 −0.06

−0.28 −0.03 0.69 0.08

 , Σ =


0.0037 0.0035 0.0023 0.0029

0.0035 0.0039 0.0021 0.0031

0.0023 0.0021 0.0018 0.0020

0.0029 0.0031 0.0020 0.0031



Table A.1 : Details of the 4FF dataset

Source
6 Portfolios Formed on Size and Book-to-Market (2× 3)

from K.R. French’s websitea

Time Period monthly data from 2002 to 2011

Asset 1 Cash

Asset 2 Small Value: a portfolio composed of small-sized and value stocks

Asset 3 Small Growth: a portfolio composed of small-sized and growth stocks

Asset 4 Large Value: a portfolio composed of large-sized and value stocks

Asset 5 Large Growth: a portfolio composed of large-sized and growth stocks

Table A.2 : Details of the 3IND dataset

Source 5 Industry Portfolios from K.R. French’s websitea

Time Period monthly data from 2002 to 2011

Asset 1 Cash

Asset 2 Cnsmr: a portfolio composed of the following industries:

Consumer Durables, NonDurables, Wholesale, Retail, and Some Services

(Laundries, Repair Shops)

Asset 3 Manuf: a portfolio composed of the following industries:

Manufacturing, Energy, and Utilities

Asset 4 HiTec: a portfolio composed of the following industries:

Business Equipment, Telephone and Television Transmission

ahttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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in the 4FF dataset, and

δ =


0.0056

0.0080

0.0043

 , Ψ =


0.09 −0.08 0.11

0.28 −0.13 0.09

0.04 −0.14 0.17

 , Σ =


0.0016 0.0015 0.0020

0.0015 0.0024 0.0023

0.0020 0.0023 0.0038


in the 3IND dataset.

B Performance Evaluation Methodology

We generated two different sets of scenarios, i.e., scenario set A: {Ri,s(t) | i ∈ I, s ∈ SA, t ∈ T }
and scenario set B: {Ri,s(t) | i ∈ I, s ∈ SB, t ∈ T }, where |SA| = |SB| = S and SA ∩ SB = ∅
The optimal solutions to the problems in Section 4.2 are denoted by uAi (t), w

A
i,j(k, t), e

A
i,s(t) and

yAi,m(t) for scenario set A; and by uBi (t), w
B
i,j(k, t), e

B
i,s(t) and yBi,m(t) for scenario set B.

To assess in-sample performance, the solutions were evaluated on the basis of the scenario set

that was used to compute them. Specifically, we first calculated the CVaR (5. a) and the expected

portfolio value (5. b) by using uAi (t), w
A
i,j(k, t), e

A
i,s(t), y

A
i,m(t) and scenario set A. Likewise, we

then calculated them by using uBi (t), w
B
i,j(k, t), e

B
i,s(t), y

B
i,m(t) and scenario set B. We refer to

these average value as the in-sample performance.

To assess out-of-sample performance, the solutions were evaluated on the basis of the scenario

set that was not used to compute them. To describe a way to assess out-of-sample performance,

we shall first use uAi (t), w
A
i,j(k, t), e

A
i,s(t), y

A
i,m(t) and scenario set B. In the case of Basic, the

investment performance can be measured by means of uAi (t) and scenario set B. In other cases,

we first calculate the adjustments at the beginning of the first period as

ûBi (1) := uAi (1), i ∈ I.

Next, we calculate the adjustments of assets i ∈ I \ {1} in subsequent periods. Specifically, we

use (22) as

ûBi,s(t) := uAi (t)+

t−1∑
k=1

∑
j∈I

wA
i,j(k, t)

Rj,s(k)−
∑
ℓ∈SA

PℓRj,ℓ(k)

 , i ∈ I\{1}, s ∈ SB, t ∈ T \{1}

in the case of Linear, use (18. b) and (20) as

ûBi,s(t) := uAi (t) +
M∑

m=1

DA
i,s,m(M ; t) yAi,m(t), i ∈ I \ {1}, s ∈ SB, t ∈ T \ {1},

where DA
i,s,m(M ; t) :=

∑
ℓ∈SA

di,ℓ,m(t)√
λi,m(t)

Ki,ℓ,s(t) in the case of KerDR(M), and use (13. b) as

ûBi,s(t) := uAi (t) +
∑
ℓ∈SA

eAi,ℓ(t)Ki,ℓ,s(t), i ∈ I \ {1}, s ∈ SB, t ∈ T \ {1}
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in the case of Kernel. After that, we calculate the remaining adjustments of cash from (10. g) as

follows:

ûB1,s(t) = C(t)−
∑

i∈I\{1}

γi(û
B
i,s(t))−

∑
i∈I\{1}

ûBi,s(t), s ∈ SB, t ∈ T \ {1}.

Finally, investment performance can be measured by means of ûBi,s(t) and scenario set B. We

performed the same calculation for uBi (t), wB
i,j(k, t), eBi,s(t), yBi,m(t) and scenario set A, and

referred to these average values as the out-of-sample performance.
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