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Abstract

This paper concerns the method of selecting the best subset of explanatory
variables in a multiple linear regression model. To evaluate a subset regres-
sion model, some goodness-of-fit measures, e.g., adjusted R2, AIC and BIC,
are generally employed. Although variable selection is usually handled via
a stepwise regression method, the method does not always provide the best
subset of explanatory variables according to adjusted R2, AIC and BIC. In
this paper, we propose mixed integer second-order cone programming for-
mulations for selecting the best subset of variables. Computational exper-
iments show that, in terms of the goodness-of-fit measures, the proposed
formulations yield solutions having a clear advantage over common stepwise
regression methods.

Keywords: Integer programming, Variable selection, Multiple linear
regression, Information criterion, Second-order cone programming,
Statistics

∗Corresponding author.
Email address: r-miya@cc.tuat.ac.jp (Ryuhei Miyashiro)

Preprint submitted to Elsevier June 23, 2013



1. Introduction

Variable selection in statistics, also known as feature selection or attribute
selection in machine learning, is the method of choosing a set of significant
variables from many candidate variables for model construction. Potential
benefits of variable selection are as follows (see e.g., [14, 33]): (i) improv-
ing predictive performance of a statistical model by preventing overfitting,
(ii) identifying a model that captures the essence of a system, and (iii) pro-
viding a computationally-efficient set of explanatory variables. From these
benefits, studies on variable selection are of supreme importance in multiple
regression analysis [9, 16, 26].

There are several goodness-of-fit (GOF) measures, such as adjustedR2 [32],
Akaike information criterion (AIC) [1] and Bayesian information criterion
(BIC) [28], to evaluate a subset regression model. A straightforward way to
search for the best-subset regression model is evaluating all possible subset
models. Though some procedures have been described, e.g., [12, 13, 18],
this task is practically infeasible unless the number of candidate variables is
small. Accordingly, existing studies have focused on a wide range of search
strategies for approximately solving the problem (see e.g., [8, 14, 20, 23]).
Among them is a well-known stepwise regression method [10], which repeats
forward selection (adding one significant variable) and backward elimination
(eliminating one redundant variable) until a stopping condition is satisfied.
Ridge regression [17], Lasso [31] and metaheuristics (e.g., [27]) are also used
for variable selection.

Although these heuristic optimization algorithms can handle large-scale
variable selection problems, they do not necessarily select the best set of
variables. In addition, other shortcomings of stepwise regression have been
pointed out, e.g., Whittingham et al. [33].

In contrast to heuristic optimization algorithms, integer programming
methodology has the potential to determine the best subset of explanatory
variables in a multiple linear regression model. When the number of variables
to be selected is given, the variable selection problems can be formulated
as mixed integer quadratic programming (MIQP) problems [3, 7, 22]. In
particular, Bertsimas and Shioda [7] utilized a tailored branch-and-bound
procedure to solve the problem of minimizing the sum of squared deviation.
They reported that their algorithm had significant computational advantages
over a commercial mixed integer programming (MIP) solver. It is also known
that, by employing the mean absolute deviation as a deviation measure,
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the variable selection problem can be formulated as a mixed integer linear
programming (MILP) problems (e.g., [3]). Konno and Yamamoto [22] solved
similar MILP problems by using a MIP solver, and Konno and Takaya [21]
developed a multi-step method to obtain a nearly optimal solution to large-
scale problems.

To adopt these MIQP or MILP approaches, however, the number of se-
lected variables has to be fixed in advance. This is disadvantageous because
the optimal number of variables in terms of a GOF measure is unknown
before solving the corresponding variable selection problem. On the assump-
tion that the residual variance of the best-subset regression model is given,
the variable selection problem of minimizing AIC can be formulated as MIP
problems with a nonlinear convex objective function [11, 29]; however, this
assumption clearly does not coincide with reality. A straightforward for-
mulation for minimizing AIC or BIC generally leads a MIP problem with
a nonconvex objective function, which is intractable even if integrality of
variables is relaxed.

The purpose of this paper is to develop an exact and practical method
for selecting the best subset of explanatory variables in a multiple linear
regression model. To this end, we propose mixed integer second-order cone
programming (MISOCP) formulations to build the best-subset regression
model in terms of the adjusted R̄2, AIC and BIC, without prespecifying the
number of variables to be selected. The continuous relaxation of an MISOCP
problem is a second-order cone programming (SOCP) problem, which can
be solved in polynomial time; thus, an MISOCP problem can be handled by
recent MIP solvers using a branch-and-bound procedure.

Using data sets from UCI Machine Learning Repository [4], we con-
duct computational experiments to assess the effectiveness of the proposed
MISOCP formulations. Computational results show that the proposed method
is able to provide the best subset of variables for small-sized instances in min-
utes. Furthermore, for medium-sized instances, the method often generates
a better subset of variables than stepwise regression methods do.

2. Variable selection and goodness-of-fit measures

This section makes a brief review of variable selection and GOF mea-
sures, and mentions previous researches on variable selection using integer
programming.
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2.1. Multiple linear regression analysis and variable selection

Given n data points, (yi;xi1, xi2, . . . , xik) for i = 1, 2, . . . , n, yi is referred
to as an explained variable (or dependent variable), and xij (j = 1, 2, . . . , k)
to as explanatory variables (or independent variables). In multiple linear
regression analysis, the following linear model is constructed for predicting
the value of yi:

yi = b+ a1xi1 + a2xi2 + · · ·+ akxik + εi, (1)

where εi is a prediction residual corresponding to the i-th data point. The
ordinary least squares method estimates the value of the intercept b and coef-
ficient vector a such that the sum of squared residuals

∑n
i=1 ε

2
i is minimized.

This paper considers the variable selection problem, i.e., selecting the
best subset of variables from the set of candidate explanatory variables. To
evaluate a subset regression model, in the following some GOF measures
are explained. Throughout this paper, it is assumed that the number of all
candidate variables is p, and that the number n of data points is much larger
than p.

2.2. Adjusted R2

The adjusted R2 [32], hereafter R̄2, for the regression model (1) is defined
as follows:

R̄2 = 1−

n∑
i=1

ε2i /(n− k − 1)

n∑
i=1

(yi − ȳ)2/(n− 1)
,

where ȳ = 1
n

∑n
i=1 yi. Note that maximizing R̄2 is equivalent to minimizing

n∑
i=1

ε2i /(n− k − 1), (2)

because other terms are all constants. Accordingly, if the sum of squared
residuals

∑n
i=1 ε

2
i are the same in two models, the model with smaller k is

better. Conversely, if k is fixed in advance, minimizing
∑n

i=1 ε
2
i leads the

best model.
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2.3. Information criteria: AIC and BIC

Assume that the prediction residuals, i.e., ε1, ε2, . . . , εn, are independent
and all normally distributed with zero mean and the variance σ2. Then, the
log likelihood function of the regression model (1) can be written as follows:

ℓ(a, b, σ2) = −n

2
log 2π − n

2
log σ2 − 1

2σ2

n∑
i=1

ε2i , (3)

where a = (a1, a2, . . . , ap). By partial differentiation, the maximum likeli-
hood estimator of σ2 becomes

σ2 =
1

n

n∑
i=1

ε2i . (4)

By substituting (4) into (3), the maximal value of the log likelihood function
is expressed as:

max
a, b, σ2

ℓ(a, b, σ2) = max
a, b

(
−n

2
log 2π − n

2
log

(
1

n

n∑
i=1

ε2i

)
− n

2

)
.

The Akaike information criterion (AIC) [1] of the regression model (1) is
defined as follows:

− 2 max
a, b, σ2

ℓ(a, b, σ2) + 2(k + 2) (5)

=min
a, b

(
n log 2π + n log

(
1

n

n∑
i=1

ε2i

)
+ n

)
+ 2(k + 2), (6)

where k+2 is the number of parameters (i.e., a, b, and σ2) in the model. By
omitting constant terms from (6), the variable selection problem with respect
to AIC is reduced to minimization of

n log

(
1

n

n∑
i=1

ε2i

)
+ 2k. (7)

The Bayesian information criterion (BIC) [28] is another information cri-
terion as popular as AIC. The BIC of the regression model (1) is defined as
follows:

−2 max
a, b, σ2

ℓ(a, b, σ2) + (k + 2) log n.
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As in the case for AIC, the following function is minimized to solve the
variable selection problem in terms of BIC:

n log

(
1

n

n∑
i=1

ε2i

)
+ k log n. (8)

2.4. Previous researches on variable selection via integer programming

In this subsection, previous researches on variable selection are described
from the viewpoint of integer programming.

From (2), (7) and (8), if the number k of selected variables is predeter-
mined, only minimizing the sum of squared residuals

∑n
i=1 ε

2
i is necessary to

select the best k variables by means of R̄2, AIC and BIC. This minimization
problem is known to be formulated as a MIQP problem [3, 7, 22], explained
as follows.

Let zj (j = 1, 2, . . . , p) be a 0-1 variable such that zj = 1 if the j-th can-
didate variable is selected, otherwise zj = 0. The variable selection problem
with specified k is formulated as the following MIQP problem1:

minimize
a, b, ε,z

n∑
i=1

ε2i (9)

subject to εi = yi −

(
b+

p∑
j=1

ajxij

)
(i = 1, 2, . . . , n), (10)

−Mzj ≤ aj ≤ Mzj (j = 1, 2, . . . , p), (11)
p∑

j=1

zj = k, (12)

zj ∈ {0, 1} (j = 1, 2, . . . , p), (13)

where M is a sufficiently large positive constant. If zj = 0, the j-th candidate
variable is eliminated from a regression model, because its coefficient aj has
to be 0 from Constraint (11); if zj = 1, Constraint (11) is invalidated. Thus,
the number of variables chosen becomes k due to Constraint (12). Hence, the
problem (9)–(13) is a correct formulation for minimizing the sum of squared

1When solving the MIQP (9)–(13), substituting Constraint (10) into the objective
function (9) leads a simpler formulation.
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residuals under the condition that the number of selected explanatory vari-
ables is k.

The formulation (9)–(13) is a problem with a convex quadratic objec-
tive function subject to linear and integrality constraints, i.e., MIQP. A
branch-and-bound procedure handles an integer programming problem by
relaxing the integrality constraints and then by solving the relaxation prob-
lem repeatedly; hence, a key factor for a branch-and-bound procedure is
whether the continuous relaxation problem is computationally tractable. In
this regard, the continuous relaxation of an MIQP problem is a quadratic pro-
gramming (QP) problem, which is solvable in polynomial time. Therefore a
branch-and-bound procedure works well for solving the problem (9)–(13).

Other than minimizing the sum of squared residuals, some researches
considered minimizing the mean absolute deviations, i.e., 1

n

∑n
i=1 |εi| (see [3,

21, 22]). In this case, the corresponding variable selection problem with
fixed k can be formulated as an MILP problem, which is easier than an
MIQP one.

Nevertheless, in these MIQP and MILP approaches, the value of k needs
to be fixed before solving the problems; this restriction is impractical. To
find the best subset of variables by the approaches, it is necessary to solve
all problems for k = 0, 1, . . . , p.

3. Mixed integer second-order cone programming formulations for
variable selection

In this section, we propose MISOCP formulations for maximizing R̄2,
minimizing AIC and BIC, to select the best set of variables based on these
GOF measures. Note that the proposed formulations treat k as a variable,
and the continuous relaxation problems of the formulations belong to a com-
putationally tractable class, SOCP (see Appendix A for SOCP.)

3.1. Mixed Integer SOCP formulation for maximizing R̄2

In view of (2), the variable selection problem of maximizing R̄2 can be
formulated as follows:

minimize
a, b, ε, k, z

n∑
i=1

ε2i /(n− k − 1)

subject to Constraints (10), (11), (12) and (13).
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Except for the integrality constraint (13), the above problem has the same
structure as the problem (A.1)–(A.2), which can be transformed into the
SOCP problem (A.3)–(A.8) (see Appendix A.) Hence, importing the inte-
grality constraint, we easily have an MISOCP formulation for maximizing R̄2

as follows:

minimize
a, b, ε, f,
g, k,z

f (14)

subject to εi = yi −

(
b+

p∑
j=1

ajxij

)
(i = 1, 2, . . . , n), (15)

n∑
i=1

ε2i ≤ f · g, (16)

g = n− k − 1, (17)

−Mzj ≤ aj ≤ Mzj (j = 1, 2, . . . , p), (18)
p∑

j=1

zj = k, (19)

zj ∈ {0, 1} (j = 1, 2, . . . , p). (20)

3.2. Mixed integer SOCP formulations for minimizing AIC and BIC

In view of (7), the variable selection problem of minimizing AIC can be
formulated as follows:

minimize
a, b, ε, k, z

n log

(
1

n

n∑
i=1

ε2i

)
+ 2k (21)

subject to Constraints (10), (11), (12) and (13).

However, this straightforward formulation forces us to solve a MIP prob-
lem with the nonconvex objective function (21). Hence, even its continuous
relaxation problem is computationally intractable. This is an undesirable
outcome.

In the following, we make the above problem computationally tractable.
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The objective function (21) is converted as follows:

minimize
a, b, ε, k, z

n log

(
1

n

n∑
i=1

ε2i

)
+ 2k

⇐⇒ minimize
a, b, ε, k, z

log

(
1

n

n∑
i=1

ε2i

)
+

2k

n

⇐⇒ minimize
a, b, ε, k, z

exp

(
log

(
1

n

n∑
i=1

ε2i

)
+

2k

n

)

⇐⇒ minimize
a, b, ε, k, z

(
1

n

n∑
i=1

ε2i

)
· exp

(
2k

n

)

⇐⇒ minimize
a, b, ε, k, z

(
n∑

i=1

ε2i

)
· exp

(
2k

n

)
.

Introducing a continuous variable f that represents an upper bound of (
∑n

i=1 ε
2
i )·

exp(2k/n), we have an intermediate formulation as follows:

minimize
a, b, ε, f, k,z

f

subject to
n∑

i=1

ε2i ≤ f · exp
(
−2k

n

)
, (22)

Constraints (10), (11), (12) and (13).

Now we resolve the nonlinearity in Constraint (22). Note that k is always
integer-valued due to Constraints (12) and (13). Let wj (j = 0, 1, . . . , p)
be a 0-1 variable such that wj = 1 if and only if j = k; this is achieved
by the following constraints:

∑p
j=0(j · wj) = k and

∑p
j=0wj = 1. With
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0-1 variables wj, Constraint (22) is equivalently changed as follows:

n∑
i=1

ε2i ≤ f · exp
(
−2k

n

)
⇐⇒

n∑
i=1

ε2i ≤ f · g, g = exp

(
−2k

n

)

⇐⇒



n∑
i=1

ε2i ≤ f · g, g =

p∑
j=0

(
wj · exp

(
−2j

n

))
,

p∑
j=0

(j · wj) = k,

p∑
j=0

wj = 1, wj ∈ {0, 1} (j = 0, 1, . . . , p),

where g is another continuous variable. Note that the constraint g =
∑p

j=0(wj·
exp(−2j/n)) is a linear function with respect to variables wj. This lineariza-
tion technique of a nonlinear function using 0-1 variables is called “special
ordered set type 1” [5, 6], which is well-known in the area of integer pro-
gramming.

Although the constraint
∑n

i=1 ε
2
i ≤ f ·g is still nonlinear, it is a hyperbolic

constraint and thus representable as a second-order cone constraint (see Ap-
pendix A.) Consequently, we obtain an MISOCP formulation for minimizing
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AIC as follows:

minimize
a, b, ε, f
g, k,w, z

f (23)

subject to εi = yi −

(
b+

p∑
j=1

ajxij

)
(i = 1, 2, . . . , n), (24)

n∑
i=1

ε2i ≤ f · g, (25)

g =

p∑
j=0

(
wj · exp

(
−2j

n

))
, (26)

p∑
j=0

(j · wj) = k, (27)

p∑
j=0

wj = 1, (28)

p∑
j=1

zj = k, (29)

−Mzj ≤ aj ≤ Mzj (j = 1, 2, . . . , p), (30)

wj ∈ {0, 1} (j = 0, 1, . . . , p), (31)

zj ∈ {0, 1} (j = 1, 2, . . . , p). (32)

Next, we propose an MISOCP formulation for minimizing BIC. The
difference between minimizing AIC and BIC lies only the second terms of
the objective functions (7) and (8), respectively. Hence, replacing 2j in
Constraint (26) with j log n yields the following constraint:

g =

p∑
j=0

(
wj · exp

(
−j log n

n

))
=

p∑
j=0

(
wj · n−j/n

)
. (33)

Consequently, as an MISOCP formulation for minimizing BIC, we obtain the
problem consisting of (23)–(25), (27)–(32) and (33).

4. Computational experiments and discussion

In this section, we report computational results to evaluate the proposed
MISOCP formulations, which are compared to well-known stepwise regres-
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sion methods, and have discussion on the results.
For computational experiments, we downloaded eight data sets from UCI

Machine Learning Repository [4] for regression analysis. The data set
SolarFlare has three variables (i.e., each class of flares production) to be
predicted, and accordingly 10 instances of variable selection problems were
prepared. The list of the 10 instances are shown in Table 1, where n and p
are the number of data points and that of candidate variables, respectively.

For the data set ForestFires, we created interaction terms from the
variables of x-axis and y-axis spatial coordinates. In the data set Crime,
variables having missing values for most of the samples (i.e., data points)
were removed. For all data sets, each categorical variable was transformed
into as many dummy variables as its distinct values. To avoid numerical
instability, each integer and real variable was standardized so that its mean
becomes zero and its standard deviation becomes one. In addition, samples
including a missing value and redundant variables having a constant value
were all eliminated.

Table 1: List of the instances.
abbreviation n p original dataset [4]
Housing 506 13 Housing
Servo 167 19 Servo
AutoMPG 392 25 Auto MPG
SolarFlareC 1066 26 Solar Flare (C-class flares production)
SolarFlareM 1066 26 Solar Flare (M-class flares production)
SolarFlareX 1066 26 Solar Flare (X-class flares production)
BreastCancer 194 32 Breast Cancer Wisconsin
ForestFires 517 63 Forest Fires
Automobile 159 65 Automobile
Crime 1933 100 Communities and Crime

We solved R̄2 maximization, AIC and BIC minimization problems via the
proposed MISOCP formulations2 using CPLEX 12.5 [19] as a mathematical
programming solver. All computations for solving MISOCP problems were

2In MISOCP formulations, we implemented the big-M method via indicator, a func-
tion implemented in CPLEX. Using this functions allows us not to manually determine
the value of M in Constraints (18) and (30).
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performed on a Dell Precision T5500 PC3. For each instances, 16GB memory,
eight threads and up to 10,000 seconds were assigned for a branch-and-bound
procedure. For comparison, we also solved the same instances via stepwise
regression methods using LinearModel.stepwise function implemented in
the statistics toolbox of MATLAB R2012b [25] on a NEC Mate J PC4.

The results for maximizing R̄2, minimizing AIC and BIC are shown in
Tables 2, 3 and 4, respectively. The “method” column shows

• SWRconst: stepwise regression starting with no explanatory variables,

• SWRall: stepwise regression starting with all candidate variables,

• MISOCP: the proposed MISOCP formulations, i.e., (14)–(20) for max-
imizing R̄2, (23)–(32) for minimizing AIC, and (23)–(25), (27)–(32)
and (33) for minimizing BIC,

where both stepwise regression methods iteratively add or eliminate a vari-
able to improve the corresponding GOF measure. For each instance in
the tables, the best R̄2/AIC/BIC value(s) among by SWRconst, SWRall and
MISOCP is bold-faced. The column “k” is the number of selected variables
and the column “time (s)” is computational time in seconds. In MISOCP,
each computation was terminated if computational time took more than
10,000 seconds; in such cases, the obtained subset of variables are not neces-
sarily optimal, otherwise the subset is the best.

First, from the results, we found out that the difference between the
results by SWRconst and those by SWRall are large. From Tables 2, 3 and 4, we
observed that SWRconst and SWRall selected quite different sets of variables
in many cases. For example, in the Automobile instance, the differences in
the obtained AIC values between SWRconst and SWRall are more than 20,
which is hard to ignore. Additionally, in many cases, the number k of selected
variables also greatly differs between SWRconst and SWRall.

Next, the results show that MISOCP finished selecting the subsets of
variables in minutes for small-sized instances involving less than 30 candidate
variables. Note that these obtained subsets of variables are proved to be the

3CPU: Intel Xeon W5590 3.33GHz×2; RAM: 24GB; OS: 64bit Windows 7 Ultimate
SP1; chipset: Intel 5520.

4CPU: Intel Core i7-2600S 2.80GHz; RAM: 8GB; OS: 64bit Windows 7 Professional
SP1; chipset: Intel Q67 Express.
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Table 2: Results for maximizing R̄2.

instance n p method R̄2 k time (s)
Housing 506 13 SWRconst 0.7348 11 1.12

SWRall 0.7338 13 0.18
MISOCP 0.7348 11 9.03

Servo 167 19 SWRconst 0.7419 10 1.75
SWRall 0.7348 15 0.52
MISOCP 0.7419 10 4.43

AutoMPG 392 25 SWRconst 0.8683 17 3.39
SWRall 0.8669 22 0.71
MISOCP 0.8686 16 29.83

SolarFlareC 1066 26 SWRconst 0.1869 11 3.28
SWRall 0.1818 20 1.34
MISOCP 0.1869 11 184.97

SolarFlareM 1066 26 SWRconst 0.0955 9 2.80
SWRall 0.0873 20 1.24
MISOCP 0.0955 9 95.61

SolarFlareX 1066 26 SWRconst 0.1295† 6 1.90
SWRall 0.1195 20 1.30
MISOCP 0.1295‡ 6 19.03

BreastCancer 194 32 SWRconst 0.2305 11 3.41
SWRall 0.1999 32 0.51
MISOCP 0.2494 16 3211.08

ForestFires 517 63 SWRconst 0.1006 22 15.65
SWRall 0.0558 60 3.72
MISOCP 0.1024 26 > 10000

Automobile 159 65 SWRconst 0.9656 43 24.02
SWRall 0.9630 55 5.71
MISOCP 0.9674 35 > 10000

Crime 1933 100 SWRconst 0.6839 65 104.63
SWRall 0.6796 100 8.89
MISOCP 0.6841 53 > 10000

†0.129511, ‡0.129512

best through integer programming methodology, and this is in clear contrast
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Table 3: Results for minimizing AIC.

instance n p method AIC k time (s)
Housing 506 13 SWRconst 776.36 11 1.31

SWRall 776.36 11 0.51
MISOCP 776.36 11 10.62

Servo 167 19 SWRconst 258.66 9 1.85
SWRall 266.36 14 0.75
MISOCP 258.66 9 8.41

AutoMPG 392 25 SWRconst 333.22 15 3.96
SWRall 339.44 19 1.59
MISOCP 333.22 15 51.23

SolarFlareC 1066 26 SWRconst 2816.34 9 3.09
SWRall 2819.73 13 4.02
MISOCP 2816.34 9 227.25

SolarFlareM 1066 26 SWRconst 2926.93 7 2.38
SWRall 2926.93 7 5.99
MISOCP 2926.93 7 92.18

SolarFlareX 1066 26 SWRconst 2882.81 3 1.20
SWRall 2882.81 3 7.59
MISOCP 2882.81 3 10.73

BreastCancer 194 32 SWRconst 509.72 8 3.07
SWRall 510.58 14 8.13
MISOCP 508.73 10 > 10000

ForestFires 517 63 SWRconst 1429.81 12 9.56
SWRall 1429.81 12 71.19
MISOCP 1430.25 13 > 10000

Automobile 159 65 SWRconst −26.87 21 14.20
SWRall −47.50 38 24.75
MISOCP −58.49 32 > 10000

Crime 1933 100 SWRconst 3424.26 41 84.94
SWRall 3410.92 50 312.82
MISOCP 3419.65 51 > 10000

to heuristic approaches. Although the MISOCP problems for ForestFires,
Automobile and Crime instances were not solved within 10,000 seconds, the
obtained subsets of variables are comparable to those obtained by SWRconst
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Table 4: Results for minimizing BIC.

instance n p method BIC k time (s)
Housing 506 13 SWRconst 834.88 8 1.04

SWRall 827.07 11 0.47
MISOCP 827.07 11 13.26

Servo 167 19 SWRconst 288.93 8 1.60
SWRall 303.87 11 1.50
MISOCP 288.93 8 10.51

AutoMPG 392 25 SWRconst 390.96 11 3.20
SWRall 405.71 14 2.92
MISOCP 390.96 11 59.92

SolarFlareC 1066 26 SWRconst 2855.93 6 2.04
SWRall 2855.89 6 6.51
MISOCP 2855.89 6 73.73

SolarFlareM 1066 26 SWRconst 2956.02 4 1.52
SWRall 2954.42 4 6.96
MISOCP 2954.42 4 20.59

SolarFlareX 1066 26 SWRconst 2900.12 2 0.93
SWRall 2900.12 2 7.83
MISOCP 2900.12 2 5.52

BreastCancer 194 32 SWRconst 529.28 3 1.34
SWRall 528.90 3 11.70
MISOCP 527.86 3 1198.73

ForestFires 517 63 SWRconst 1463.81 3 2.82
SWRall 1463.81 3 71.63
MISOCP 1463.81 3 > 10000

Automobile 159 65 SWRconst 31.28 15 10.56
SWRall 42.59 27 35.19
MISOCP 20.81 23 > 10000

Crime 1933 100 SWRconst 3574.68 13 24.92
SWRall 3594.84 22 390.06
MISOCP 3591.94 16 > 10000

and SWRall. In addition, for all instances in maximizing R̄2, MISOCP had
the maximal values among the three methods. This result suggests that the
stepwise regression methods have difficulty in selecting the best subset of
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Table 5: The number of the best R̄2/AIC/BIC values obtained out of 10 instances.

method R̄2 AIC BIC
SWRconst 4 7 5
SWRall 5 5 5
MISOCP 10 8 9

Table 6: The number of the best R̄2/AIC/BIC values obtained for instances that were not
solved within 10,000 seconds via MISOCP.

method R̄2 AIC BIC
SWRconst 0 1 2
SWRall 0 2 1
MISOCP 3 2 2

variables based on R̄2.
Table 5 shows the number of the best R̄2/AIC/BIC values obtained by

each method out of 10 instances; Table 6 shows the number of the best
R̄2/AIC/BIC values only for instances that were not solved within 10,000 sec-
onds via MISOCP. These tables clearly prove the superiority of MISOCP,
even for large instances. Stepwise regression methods are greedy-type heuris-
tic methods and naturally do not always provide the best subset of explana-
tory variables; however, it is also observed that the results by SWRconst

and SWRall are less robust than we expected.
About computational time, the MISOCP approaches took much longer

than the stepwise regression methods did. This is the difference between the
exact method that pursues the proof of optimality by a branch-and-bound
procedure, and the heuristic nature of stepwise regression methods.

In fact, for instances that were solved within 10,000 seconds via the
MISOCP approach, solving p+1 MIQP problems (see Section 2.4) was faster
than solving an MISOCP problem; whereas the MIQP approach did not solve
ForestFires, Automobile and Crime instances within 10,000 seconds, as
neither the MISOCP approach did. This phenomenon is explained as fol-
lows. In each node of a branch-and-bound procedure for an MIQP problem,
a dual-simplex method implemented in a MIP solver handles a QP problem.
At a child node in a branch-and-bound tree, a QP problem to be solved is al-
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most the same as its parent node. In that case, a dual-simplex method needs
a few iterations to solve the problem, i.e., “warm-start” works well for an
MIQP problem. In contrast, for an MISOCP problem, a branch-and-bound
procedure solves a continuous SOCP problem, which needs an interior point
method. Developing warm-start algorithms for an interior point method
is still in progress in the area of mathematical programming, and such al-
gorithms are not yet implemented in current commercial solvers that can
handle MISOCP.

Although the MISOCP approach needs a longer computational time than
the MIQP approach at this time, we emphasize that the proposed formulation
technique allows us to transform the variable selection problem into a single
MISOCP problem, not a collection of problems. Numerical techniques for
solving SOCP/MISOCP problems are areas of active research, and thus the
proposed MISOCP formulations are expected to be more valuable in the near
future.

Finally, we discuss minimizing other information criteria. Other than AIC
and BIC, there are several information criteria proposed so far, e.g., corrected
AIC [30] and Hannan-Quinn information criterion [15]. Using the proposed
transformation technique, we can also formulate a problem of minimizing
such an information criterion as an MISOCP problem.

5. Conclusion

This paper considered selecting the best subset of variables through the
use of several GOF measures in a multiple linear regression model. We
proposed formulations for maximizing R̄2, minimizing AIC and BIC without
prespecifying the number k of selected variables, whereas previous researches
using integer programming need to specify k. The proposed formulations are
MISOCP problems, whose continuous relaxation belong to the class SOCP,
and thus solvable using a branch-and-bound procedure.

Through computational experiments, we compared the performance of
the proposed MISOCP formulations with stepwise regression methods, well-
known variable selection algorithms. We observed that the MISOCP for-
mulations successfully selected the best subset of variables in minutes when
the number of candidate variables is less than 30. Moreover, even when the
number of candidate variables is more than 60, in many cases the MISOCP
formulations found a better subset of variables than that generated by the
stepwise regression methods.

18



In contrast to the stepwise methods, the proposed method proves the
optimality of the selected subset of explanatory variables when the associated
MISOCP problem is successfully solved. Since proper variable selection is
essential for obtaining a correct result of data analysis, this study has a great
advantage over heuristic methods.
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Appendix A. Second-order cone programming

This appendix adds a supplementary explanation for second-order cone
programming (SOCP). For more detail, see [24].

A general form of an SOCP problem is given as follows:

minimize
x

c⊤0 x

subject to ∥Aix+ bi∥ ≤ c⊤i x+ di (i = 1, 2, . . . ,m),

where ∥u∥ = (u⊤u)1/2. The constraint ∥Aix + bi∥ ≤ c⊤i x + di is called
a second-order cone constraint. Since the constraint becomes linear when
Ai is a null matrix and bi is a zero vector, the class SOCP includes linear
programming as a special case. As well as a linear programming problem,
an SOCP problem is solvable in polynomial time by using an interior point
method [2, 24]; several mathematical programming solvers can handle an
SOCP problem.

A hyperbolic constraint takes the form of x2 ≤ f · g, f ≥ 0, g ≥ 0 for
scalar variables x, f and g. A linear programming problem with a hyper-
bolic constraint is representable as an SOCP problem, because a hyperbolic
constraint can be represented as a second-order cone constraint as below:

x2 ≤ f · g, f ≥ 0, g ≥ 0 ⇐⇒
∥∥∥∥( 2x

f − g

)∥∥∥∥ ≤ f + g.

In addition, when the left-hand-side of a hyperbolic constraint is a product
of a variable vector x, the constraint is also expressed as a second-order cone
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constraint, because

x⊤x ≤ f · g, f ≥ 0, g ≥ 0 ⇐⇒
∥∥∥∥( 2x

f − g

)∥∥∥∥ ≤ f + g.

On the assumption that c⊤x + d is always positive, a problem of the
following form can also be casted as an SOCP problem:

minimize
x

x⊤x

c⊤x+ d
(A.1)

subject to Ax ≤ b; (A.2)

because it is equivalent to the following SOCP problem:

minimize
x, f, g

f (A.3)

subject to x⊤x ≤ f · g, (A.4)

Ax ≤ b, (A.5)

c⊤x+ d = g, (A.6)

f ≥ 0, (A.7)

g ≥ 0. (A.8)

A mixed integer SOCP (MISOCP) problem is an SOCP problem with
integrality constraints over a part of variables. Making good use of the fact
that the continuous relaxation problem of MISOCP is an SOCP problem,
which is efficiently solvable, some recent integer programming solvers can
handle an MISOCP problem by using a branch-and-bound procedure.

References

[1] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE
Transactions on Automatic Control, Vol.19, No.6, pp.716–723 (1974).

[2] F. Alizadeh and D. Goldfarb, “ Second-Order Cone Programming,”
Mathematical Programming, Vol.95, No.1, pp.3–51 (2003).

[3] T.S. Arthanari and Y. Dodge, Mathematical Programming in Statistics
(John Wiley & Sons, 1981).

20



[4] K. Bache and M. Lichman: UCI Machine Learning Repository. Univer-
sity of California, School of Information and Computer Science, Irvine,
2013. http://archive.ics.uci.edu/ml

[5] E.M.L. Beale, “Two Transportation Problems,” Proceedings of the 3rd
International Conference on Operational Research, pp.780–788 (1963).

[6] E.M.L. Beale and J.A. Tomlin, “ Special Facilities in a General Mathe-
matical Programming System for Non-Convex Problems Using Ordered
Sets of Variables,” Proceedings of the 5th International Conference on
Operational Research, pp.447–454 (1970).

[7] D. Bertsimas and R. Shioda, “Algorithm for Cardinality-Constrained
Quadratic Optimization,” Computational Optimization and Applica-
tions, Vol.43, No.1, pp.1–22 (2009).

[8] A.L. Blum and P. Langley, “ Selection of Relevant Features and Ex-
amples in Machine Learning,” Artificial Intelligence, Vol.97, No.1–2,
pp.245–271 (1997).

[9] K.P. Burnham and D.R. Anderson, Model Selection and Multimodel
Inference: A Practical Information Theoretic Approach, 2nd Edition
(Springer, 2002).

[10] M.A. Efroymson, “Multiple Regression Analysis,” In A. Ralston, and
H.S. Wilf (Eds.), Mathematical Methods for Digital Computers, pp. 191–
203 (Wiley, 1960).

[11] S. Emet, “A Model Identification Approach Using MINLP Techniques,”
Proceedings of the 9th WSEAS International Conference on Applied
Mathematics, pp.347–350 (2006).

[12] G.M. Furnival and R.W. Wilson Jr., “Regressions by Leaps and
Bounds,” Technometrics, Vol.16, No.4, pp.499–511 (1974).

[13] C. Gatu and E.J. Kontoghiorghes, “Branch-and-Bound Algorithms for
Computing the Best-Subset Regression Models,” Journal of Computa-
tional and Graphical Statistics, Vol.15, No.1, pp.139–156 (2006).

[14] I. Guyon and A. Elisseeff, “An Introduction to Variable and Fea-
ture Selection,” Journal of Machine Learning Research, Vol.3 (March),
pp.1157–1182 (2003).

21



[15] E.J. Hannan and B.G. Quinn, “The Determination of the Order of
an Autoregression,” Journal of the Royal Statistical Society, Series B,
Vol.41, No.2, pp.190–195 (1979).

[16] R.R. Hocking, “The Analysis and Selection of Variables in Linear Re-
gression,” Biometrics, Vol.32, No.1, pp.1–49 (1976).

[17] A.E. Hoerl and R.W. Kennard, “Ridge Regression: Biased Estimation
for Non-Orthogonal Problems,” Technometrics, Vol.20, No.1, pp.55–67
(1970).

[18] M. Hofmann, C. Gatu, and E.J. Kontoghiorghes, “ Efficient Algorithms
for Computing the Best Subset Regression Models for Large-Scale Prob-
lems,” Computational Statistics & Data Analysis, Vol.52, No.1, pp.16–29
(2007).

[19] IBM ILOG, IBM ILOG CPLEX 12.5, 2012.

[20] R. Kohavi and G.H. John, “Wrappers for Feature Subset Selection,”
Artificial Intelligence, Vol.97, No.1–2, pp.273–324 (1997).

[21] H. Konno and Y. Takaya, “Multi-Step Methods for Choosing the Best
Set of Variables in Regression Analysis,” Computational Optimization
and Applications, Vol.46, No.3, pp.417–426 (2010).

[22] H. Konno and R. Yamamoto, “Choosing the Best Set of Variables in
Regression Analysis Using Integer Programming,” Journal of Global Op-
timization, Vol.44, No.2, pp.272–282 (2009).

[23] H. Liu and H. Motoda, Computational Methods of Feature Selection
(Chapman and Hall/CRC, 2007).

[24] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
Second-Order Cone Programming,” Linear Algebra and its Applications,
Vol.284, No.1, pp.193–228 (1998).

[25] The MathWorks Inc., MATLAB R2012b, 2012.

[26] A. Miller, Subset Selection in Regression, 2nd Edition (Chapman and
Hall/CRC, 2002).

22



[27] R. Meiri and J. Zahavi, “Using Simulated Annealing to Optimize the
Feature Selection Problem in Marketing Applications,” European Jour-
nal of Operational Research, Vol.171, No.3, pp.842–858 (2006).

[28] G. Schwarz, “Estimating the Dimension of a Model,” Annals of Statis-
tics, Vol.6, No.2, pp.461–464 (1978).

[29] H. Skrifvars, S. Leyffer, and T. Westerlund, “Comparison of Certain
MINLP Algorithms When Applied to a Model Structure Determination
and Parameter Estimation Problem,” Computers & Chemical Engineer-
ing, Vol.22, No.12, pp.1829–1835 (1998).

[30] N. Sugiura, “ Further Analysts of the Data by Akaike’s Information Cri-
terion and the Finite Corrections,” Communications in Statistics —
Theory and Methods, Vol.7, No.1 (1978), pp. 13–26.

[31] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Jour-
nal of the Royal Statistical Society, Series B, Vol.58, No.1, pp.267–288
(1996).

[32] H. Theil, Economic Forecasts and Policy (North-Holland Publishing
Company, 1961).

[33] M.J. Whittingham, P.A. Stephens, R.B. Bradbury, and R.P. Freckleton,
“Why Do We Still Use Stepwise Modelling in Ecology and Behaviour?”
Journal of Animal Ecology, Vol.75, No.5, pp.1182–1189 (2006).

23


