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SUCCESSIVE PROJECTION METHOD FOR WELL-CONDITIONED MATRIX

APPROXIMATION PROBLEMS

MIRAI TANAKA AND KAZUHIDE NAKATA

Abstract. Matrices are often required to be well-conditioned in a wide variety of areas including signal processing. Prob-
lems to find the nearest positive definite matrix or the nearest correlation matrix that simultaneously satisfy the condition

number constraint and sign constraints are presented in this paper. Both problems can be regarded as those to find a
projection to the intersection of the closed convex cone corresponding to the condition number constraint and the convex
polyhedron corresponding to the other constraints. Thus, we can apply a successive projection method, which is a classical

algorithm for finding the projection to the intersection of multiple convex sets, to these problems. The numerical results
demonstrated that the algorithm effectively solved the problems.

1. Introduction: Well-conditioned matrix approximation

A matrix is called well-conditioned if its condition number (the ratio of the largest to the smallest singular value in
this paper) is close to unity. Otherwise, it is called ill-conditioned. Well-conditioned matrices are often required in many
fields of science and engineering, including signal processing and finance, as the following basic example indicates:

Example (Error of perturbed linear equation). Let us see how numerical error affects the solution to a linear equation. Let
x∗ be the solution to the linear equation Ax = b and x∗+∆x∗ be the solution to perturbed linear equation Ax = b+∆b.
This is the case where only b includes numerical error. Since x∗ is the solution to the original linear equation, ∆x∗ can
be regarded as error in the solution caused by the perturbation. In such a situation, it is known that the relative error is
known to be bounded in such situation with the condition number of the coefficient matrix as:

∥∆x∗∥2
∥x∗∥2

≤ cond(A)
∥∆b∥2
∥b∥2

.

See Horn and Johnson [11, Section 5.8] for analysis for a case where A was also perturbed.

In fact, some researchers [1, 16] on signal processing have studied the maximum likelihood estimators of covariance ma-
trices under a condition number constraint. They have derived analytical solutions to the estimators under the multivariate
Gaussian distribution.

We generally cannot always obtain such matrices easily. It is natural to approximate a given ill-conditioned matrix
with the nearest well-conditioned one in such cases in view of optimization. Tanaka and Nakata [15] proposed ways of
obtaining the nearest well-conditioned positive definite matrix by solving the following optimization problem on space Sn

of n-dimensional symmetric matrices:

(1)
minimize ∥X − X̂∥
subject to X ∈ Sn

+,
cond(X) ≤ κ,

where X̂ ∈ Sn is a given matrix, X ∈ Sn is a decision variable, and Sn
+ ⊂ Sn is the cone of n-dimensional positive

semidefinite matrices. Here, cond(X) = σmax(X)/σmin(X) is the condition number of X, and κ ≥ 1 is a given upper
bound for the condition number of X. They proved that (1) is solvable in O(n3) computational time by using some
commonly used norms.

We often modify some entries of a covariance matrix whose sign is counter-intuitive in various areas including finance [3,
Section 10.2]. However, the sign of Xij has not been taken into consideration in (1). Thus, here we consider the following
problem:

(2)

minimize ∥X − X̂∥
subject to X ∈ Sn

+,
cond(X) ≤ κ,
Xij ≥ 0 ((i, j) ∈ P ),
Xij ≤ 0 ((i, j) ∈ N),

where P,N ⊂ {1, . . . , n}2 are given sets of indices corresponding to the sign constraints.
This problem has a relationship with sparse inverse covariance estimation [4, 5, 8]. Let us consider a multivariate

Gaussian distribution with covariance matrix Σ. It is known that [Σ−1]ij = 0 if and only if variables i and j are
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conditionally independent. Thus, if we know set I0 of pairs of variables that are conditionally independent a priori, we

can approximate sample covariance matrix Σ̂ with positive definite matrix Σ that satisfies [Σ−1]ij = 0 for all (i, j) ∈ I0

and cond(Σ) ≤ c by solving (2) with X̂ = Σ̂
−1

, κ = c, and P = N = I0 and taking Σ = X−1.
In addition, we also consider the following problem to approximate a correlation matrix:

(3)

minimize ∥X − X̂∥
subject to X ∈ Sn

+,
cond(X) ≤ κ,
Xii = 1 (i = 1, . . . , n),
Xij ≥ 0 ((i, j) ∈ P ),
Xij ≤ 0 ((i, j) ∈ N).

When P = N = ∅, (3) corresponds to the nearest correlation matrix problem with the condition number constraint.
Although the nearest correlation matrix problem has been extensively studied [10, 13], there are few researchers who have
considered the condition number of the correlation matrix simultaneously.

Since (2) and (3) can be formulated as a symmetric cone optimization problem, they are solvable in polynomial time
with an interior-point method However, it is still difficult to solve large-scale instances at reasonable computational cost.

We propose an efficient algorithm for (2) and (3). We employed the successive projection method [2, 7, 9], which is
a classical algorithm for finding the projection to the intersection of multiple convex sets. We solve (1) by utilizing the
binary search proposed by Tanaka and Nakata [15] as a subroutine in this algorithm.

The remainder of this paper is organized as follows. Section 2 is devoted to introducing the successive projection
method for a general problem and after that for (2) and (3) with the Frobenius norm. Section 3 reports the numerical
results that demonstrate the effectiveness of our approach. Section 4 provides some concluding remarks.

In what follows, we can assume (i, i) ̸∈ N for all i without loss of generality. The reason for this is that when (i, i) ∈ N
for some i, (2) has no feasible solution other than X = O (we define cond(O) = 1 in this paper) and (3) becomes infeasible.

2. Successive projection method

First, we consider the more general problem below:

(4)
minimize ∥x− x̂∥
subject to x ∈ Ci (i = 1, . . . ,m),

where x ∈ Rn is a decision variable, ∥ · ∥ is a norm induced by an inner product on Rn, and C1, . . . , Cm ⊂ Rn are given
closed convex sets. An optimal solution to (4) can be considered as a projection of x̂ to

∩m
i=1 Ci.

We can solve (4) with a successive projection method when the computation of each projection to Ci is easy, i.e., for
each i we can obtain an optimal solution to the following problem at modest computational cost:

(5)
minimize ∥x− x̂∥
subject to x ∈ Ci.

In what follows, Pi(x̂) denotes an optimal solution to (5). The successive projection method is a classical algorithm to
solve (4) by successively projecting a point to each set. The pseudo-code of this algorithm is quite simple as seen in
Algorithm 1. This algorithm was first proposed by Dykstra [7] for a family of closed convex cones. Boyle and Dykstra [2]
then extended this algorithm to general closed convex sets in Hilbert space. Thus, this algorithm is also called Dykstra’s
algorithm. Han [9] has given a precise description of the extended algorithm in Euclidean space. The following theorem
implies the global convergence of this algorithm.

Algorithm 1 Successive projection method for (4)

1: x
(0)
m := x̂, y

(0)
1 , . . . ,y

(0)
m := 0, and k = 0

2: while x
(k)
m is not approximate optimal do

3: x
(k+1)
0 := x

(k)
m

4: for i = 1, . . . ,m do

5: x
(k+1)
i := Pi(x

(k+1)
i−1 + y

(k)
i )

6: y
(k+1)
i := x

(k+1)
i−1 + y

(k)
i − x

(k+1)
i

7: end for
8: k := k + 1
9: end while
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Theorem 1 (Han [9, Theorem 4.8]). Let C1, . . . , Cp be convex polyhedra and Cp+1, . . . , Cm be closed convex sets such that

(
∩p

i=1 Ci) ∩ (
∩m

i=p+1 int Ci) ̸= ∅, then sequence {x(k)
m } generated by Algorithm 1 converges to an optimal solution to (4) as

k −→ ∞.

Next, we will consider applying this algorithm to our problems. Let us define the following closed convex sets for (2):

Cpoly = {X ∈ Sn : Xij ≥ 0 ((i, j) ∈ P ), Xij ≤ 0 ((i, j) ∈ N)},
Ccond = {X ∈ Sn

+ : cond(X) ≤ κ}

and for (3) we replace Cpoly with

Cpoly = {X ∈ Sn : Xii = 1 (i = 1, . . . , n), Xij ≥ 0 ((i, j) ∈ P ), Xij ≤ 0 ((i, j) ∈ N)}.
For both problems, it is easy to see Cpoly is a closed convex set. The following lemma guarantees that Ccond is also closed
convex set.

Lemma 2. Ccond is a closed convex set.

Proof. First, we will prove closedness. Since we defined cond(O) = 1 in this paper, we can prove that:

Ccond = {X ∈ Sn
+ : λmax(X) ≤ κλmin(X)},

where λmin(X) and λmax(X) denote the smallest and largest eigenvalues of X. By using the continuity of λmin(·) and
λmax(·) [11, Theorem 2.4.9.2], we can find closedness.

Next, we will prove convexity. We arbitrarily take A,B ∈ Ccond and α ∈ [0, 1]. In addition, let vmin and vmax be
eigenvectors of C = (1− α)A+ αB with ∥vmin∥ = ∥vmax∥ = 1 corresponding to λmin(C) and λmax(C). Then, we obtain
the following inequality:

λmin(C) = v⊤
minCvmin = (1− α)v⊤

minAvmin + αv⊤
minBvmin ≥ (1− α)λmin(A) + αλmin(B).

Similarly, we can prove the inequality below:

λmax(C) ≤ (1− α)λmax(A) + αλmax(B).

Since λmax(A) ≤ κλmin(A) and λmax(B) ≤ κλmin(B), we find the following inequality:

cond(C) =
λmax(C)

λmin(C)
≤ (1− α)λmax(A) + αλmax(B)

(1− α)λmin(A) + αλmin(B)
≤ κ,

which implies convexity. �

We also define Ppoly(·) and Pcond(·) as projectors to the corresponding cone. Since the corresponding optimization
problem is separable, the computation of Ppoly(·) becomes quite easy as:

[Ppoly(X)]ij =


1 if i = j,

0 otherwise if (i, j) ∈ P with Xij < 0 or (i, j) ∈ N with Xij > 0,

Xij otherwise.

In addition, the computation of Pcond(·) is computed in O(n3) of computational time with a binary search [15]. Thus, we
can efficiently apply the successive projection method to our problem. We present our successive projection method for
(2) and (3) in Algorithm 2.

Algorithm 2 Successive projection method for (2) and (3)

1: Y
(0)
poly,Y

(0)
cond := O, X

(1)
poly := Ppoly(X̂), and k = 1

2: while X
(k)
poly is not approximate optimal do

3: X
(k+1)
cond := Pcond(X

(k)
poly + Y

(k)
cond)

4: Y
(k+1)
cond := X

(k)
poly + Y

(k)
cond −X

(k+1)
cond

5: X
(k+1)
poly := Ppoly(X

(k+1)
cond + Y

(k)
poly)

6: Y
(k+1)
poly := X

(k+1)
cond + Y

(k)
poly −X

(k+1)
poly

7: k := k + 1
8: end while

The following theorem implies global convergence of our algorithm for (2) and (3).

Theorem 3. A sequence, {X(k)
poly}, generated by Algorithm 2 converges to an optimal solution to (2) and (3) as k −→ ∞.
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Proof. The Cpoly is virtually convex polyhedral for each problem. From Lemma 2, we can also see the convexity of Ccond.
Moreover, I ∈ Cpoly ∩ int Ccond holds. Thus, by using Theorem 1, we can see that sequence {X(k)

poly} converges to an
optimal solution to each problem. �

Remark. Algorithm 2 can be applied to the following well-conditioned matrix approximation problem with linear equality
constraints:

minimize ∥X − X̂∥
subject to X ∈ Sn

+,
cond(X) ≤ κ,
AX = b,

where A : Sn −→ Rm is a linear mapping and b ∈ Rm, by defining

Cpoly = {X ∈ Sn : AX = b}.

Letting A⊤ : Rm −→ Sn be the adjoint of A, we can prove that

Ppoly(X̂) = X̂ +A⊤(AA⊤)−1(b−AX̂).

Note that A does not change at each iteration. Thus, Algorithm 2 works well when AA⊤ has the following nice structures,
i.e., when the number m of equality constraints is small and The closed form of (AA⊤)−1 is available.

3. Numerical results

We solved multiple instances with our algorithm and an interior-point method and compared the results To verify that

it was effective. We implemented our algorithm on MATLAB 7.14. We stopped our algorithm when X
(k)
poly ∈ Sn

+ and

cond(X
(k)
poly) ≤ (1 + 10−6)κ hold simultaneously. We modeled (2) and (3) with YALMIP 3 [12] and solved the resulting

symmetric cone optimization problem with SeDuMi 1.3 [14] to compare the results with our algorithm with those with an
interior-point method.

We generated instances as follows. We sampled every entry of matrix U ∈ Rn×n from the uniform distribution on

[−1,+1) and generated matrix X̂ = U + U⊤. We also set P and N to the set of indices corresponding to the smallest

and the largest off-diagonal 2n entries of X̂. We also set κ = 106.
The results for small-scale instances of (2) and (3) are listed in Tables 1 and 2. The sizes of instances are shown in “n”

columns, the elapsed time in seconds for the interior-point method and the successive projection method are in the “time
(IPM) [s]” columns for the former and “time (SPM) [s]” columns for the latter, and the numbers of iterations for the
successive projection method are in the “iter (SPM)” columns. We can see the following from these tables: As the size of
instances became large, the elapsed time for the interior-point method rapidly increased. However, the elapsed time for
our successive projection method gradually increased.

Table 1. Results for small-scale instances
of (2)

n time (IPM) [s] time (SPM) [s] iter (SPM)

20 3.5× 10−1 5.6× 10−2 98
30 1.1× 10+0 9.7× 10−2 133
40 3.1× 10+0 9.7× 10−2 94
50 9.1× 10+0 1.1× 10−1 75
60 2.6× 10+1 1.3× 10−1 79
70 1.0× 10+2 1.8× 10−1 78
80 3.1× 10+2 1.7× 10−1 70
90 7.4× 10+2 2.3× 10−1 69

100 1.6× 10+3 3.0× 10−1 71

Table 2. Results for small-scale instances
of (3)

n time (IPM) [s] time (SPM) [s] iter (SPM)

20 3.7× 10−1 5.5× 10−2 97
30 9.7× 10−1 9.9× 10−2 130
40 3.3× 10+0 1.7× 10−1 154
50 8.8× 10+0 2.3× 10−1 176
60 2.7× 10+1 2.9× 10−1 186
70 1.0× 10+2 3.7× 10−1 195
80 3.1× 10+2 4.8× 10−1 211
90 7.9× 10+2 7.1× 10−1 219

100 1.4× 10+3 9.8× 10−1 238

We also solved large-scale instances with our algorithm. The results are summarized in Tables 3 and 4. We can see
that our algorithm could quickly solve large-scale instances that the interior-point method could not during the modest
computational time. In addition, we can see that the size of the matrix for (2) contributed less to the number of iterations,
although it certainly did for (3).

Let us loot at how the sequence, {X(k)
poly}, generated by our algorithm converged to the approximate optimal solution,

X∗, generated by our successive projection algorithm for the instance of n = 100. The behavior of the error norms,

∥X(k)
poly − X∗∥, are plotted in Figure 1. This figure implies that {X(k)

poly} converged to X∗ linearly. The sequence
4



Table 3. Results for large-scale instances of (2)

n time (SPM) [s] iter (SPM)

128 4.3× 10−1 60
256 1.4× 10+0 49
512 5.1× 10+0 45

1024 2.4× 10+1 42
2048 1.5× 10+2 38
4096 1.1× 10+3 36
8192 8.4× 10+3 35

Table 4. Results for large-scale instances of (3)

n time (SPM) [s] iter (SPM)

128 1.1× 10+0 237
256 6.0× 10+0 308
512 4.5× 10+1 402

1024 2.7× 10+2 481
2048 2.5× 10+3 654
4096 2.5× 10+4 826
8192 2.7× 10+5 1115

generated by our algorithm behaved similarly for the other instances. Similar results (Figure 2) were also obtained for
(3).
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Figure 1. Behavior of error
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Figure 2. Behavior of error
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poly −X∗∥F for (3).

4. Concluding remarks

We proposed a successive projection method for well-conditioned positive definite matrix approximation problems in
this paper. Our algorithm was based on projections to the closed convex cone of well-conditioned matrices and that to the
convex polyhedron of matrices that satisfied sign constraints (and some linear equality constraints). Our algorithm had
two main advantages. The first is simplicity, which enabled us easily implement our successive projection method. The
second advantage was practical linear convergence. Our numerical results suggested linear convergence with our algorithm.

We were not able to prove linear convergence with our algorithm in this research. Higham [10] also mentioned that the
successive projection method (Algorithm 1) linearly converges to an optimal solution at best for the nearest correlation
matrix problem, which is a simpler one than our problems. Deutsch and Hundal [6] proved linear convergence when the
convex sets were all subspaces. However, a necessary and sufficient condition to linear convergence by the algorithm has
never been known. A worst-case analysis of the algorithm should be studied. Our future work also includes extending
to the use of different norms. The confidence of entries in an estimator may not be uniform to approximate a covariance

matrix. In such cases weighted norms like ∥H◦X∥F =
√∑

i,j H
2
ijX

2
ij should be used instead of the (unweighted) Frobenius

norm ∥X∥F =
√∑

i,j X
2
ij . However, weighted norms are generally not unitary similarity invariant. Hence, Pcond(·) may

not be able to be computed easily to use of them since we cannot simply use a binary search [15].
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