
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. 2011-2 

Application of Mathematical Optimization 

Procedures to Intervention Effects  

in Structural Equation Models 

 

 

 

 
Kentaro TANAKA, Atsushi YAGISHITA  

and Masami MIYAKAWA 

 

 

 

July, 2011 
 

Tokyo Institute of Technology 
 

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, JAPAN 

http://www.me.titech.ac.jp/index-e.html 

 

Department of Industrial Engineering and Management 
 

TTTeeeccchhhnnniiicccaaalll   RRReeepppooorrrttt   



Application of Mathematical Optimization Procedures
to Intervention Effects in Structural Equation Models

Kentaro Tanaka∗, Atsushi Yagishita† and Masami Miyakawa‡

April 20, 2011

Abstract

For a given statistical model, it often happens that it is necessary to intervene the
model to reduce the variances of the output variables. In structural equation models,
this can be done by changing the values of the path coefficients by intervention. To this
purpose, we first introduce the idea of decomposition of the total effects. Furthermore,
we show that the mean vector and variance matrix can be decomposed into several parts
in terms of the total effects. Then, we show that an algorithm to obtain the intervention
method which minimizes the weighted sum of the variances can be formulated as a
convex quadratic programming by using the decompositions. This formulation allows
us to impose boundary conditions for the intervention, so that we can find the practical
solutions. We also treat a problem to adjust the means on targets.

Key words: Convex quadratic programming; Structural equation models; Total effects.

1 Introduction

The methods of structural equation models (SEMs) developed by geneticists (Wright (1923))
and economists (Haavelmo (1943) and Koopmans (1949)) are widely used as analytical tools
in a lot of fields including genetics, econometrics, social sciences and statistical quality con-
trol. To meet the demands of the practical researchers, thousands of studies on parameter
estimation and model fitting for structural equation models have been made.

However, structural equation models are more than tools for analysis. We can use struc-
tural equation models as tools to represent the causal relationships between the variables
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(Pearl (2009)). If we intervene a part of the causal structure, then the overall causal structure
changes. By using the structural equation model that represents the true causal relation-
ships, we can evaluate the amount of change caused by the intervention. This means that we
can compute the optimal intervention method to minimize the variance of a variable. Kuroki
and Miyakawa (2003), Kuroda et al. (2006) and Kuroki (2008) evaluated the intervention
effect for the variance of a variable and give a method to obtain the optimal intervention that
minimizes the variance. However, it is difficult to use their method in practice because they
implicitly use the impractical assumption that the intervention can be made freely without
any constraint (e.g. we may have a bound for an intervention by changing a parameter of a
structural equation because of the cost to change it).

In this paper, we formulate the problems to obtain the optimal intervention that min-
imizes the variances and to adjust the means as convex quadratic programmings. This
formulation allows us to easily impose boundary conditions for the intervention. To this
purpose, we first introduce the idea of decomposition of total effects in Section 2. Note that
the term “decomposition of total effects” means not only decomposition of total effects into
direct and indirect effects, but also decomposition by paths or set of variables. We also
explain that the mean vector and variance matrix can be decomposed into several parts in
terms of the total effects. In Section 3, we show that the problem to obtain the optimal
intervention that minimizes the variances can be formulated as a convex quadratic program-
ming. We also treat a problem to adjust the means. Next, in Section 4, we show how the
proposed algorithms given in Section 3 work by using a toy model. Finally, we give some
discussion in Section5.

2 Decomposition of total effects and Interventions

First, in Section 2.1, we briefly mention structural equation models and path diagrams, and
then introduce some notations. Next, in Section 2.2, we introduce matrix representation
of total effects and their decomposition. The idea of decomposition of total effects is very
important to consider the optimal intervention which we will treat in Section 3. Finally, in
Section 2.3, we explain the interventions to the structural equation models.

2.1 Structural Equation Models

The models that the relations among random variables are described in terms of linear
equations are called structural equation models. To give some explanations about terms and
notations, let us consider an example of structural equation model.

Example 1. Assume that six random variables T1, T2, X1, X2, S1 and S2 are generated by
the following linear structural equations:

T = µt;pa(t) + ϵt;pa(t),

X1 = µx1;pa(x1) + αx1tT + ϵx1;pa(x1),

X2 = µx2;pa(x2) + αx2tT + αx2x1X1 + ϵx2;pa(x2),

S1 = µs1;pa(s1) + αs1x1X1 + ϵs1;pa(s1),

S2 = µs2;pa(s2) + αs2tT + αs2x2X2 + αs2s1S1 + ϵs2;pa(s2),
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where:

• µt1;pa(t1), . . . , µs2;pa(s2) are the intercepts;

• αs1t, . . . , αs2s1 are proportionality coefficients called path coefficients;

• ϵt;pa(t), . . . , ϵs2;pa(s2) are the error terms.

We will soon explain the meanings of subscripts such as x2;pa(x2).
In the above equations, we presume that each left-hand side is determined by the right-

hand side, i.e. right-hand sides are causes and left-hand sides are the results. If we represent
a causal effect by an arrow with its path coefficient, then the relations among the random
variables T , X1, X2, S1 and S2 can be graphically represented as Figure 1. This graph is
called the path diagram. The arrow from T to X2 means presumed direct causal effect from

T

αx1t X1

αx2t

αx2x1

αs1x1

αs2x2X2

αs2s1

S1

S2

αs2t

Figure 1: An example of path diagram with five variables

T to X2. For this arrow, T is said to be a parent of X2. Conversely, X2 is said to be a child
of T . These are graph theoretic terms. Here, X2 has two parents T and X1, and we denote
them by pa(x2) as an abbreviation for parents of X2. Furthermore, we denote by ;pa(x2)
removing the effect of pa(x2). Thus, µx2;pa(x2) represents the mean of X2 when the effects
of the parents of X2 are removed. We also use terms ancestor and descendant as graph
theoretic terms. For example, the ancestors of S1 are X1 and T , and the descendants of X1

are X2, S1 and S2.

We now formulate general structural equation model in a way so that it is easier to use
for the calculations of total effects, means and variances which we will treat in Section 2.2.
Consider a random vector V the elements of which are generated by linear structural equa-
tions. We divide the random vector V into three disjoint parts: T , X and S, so that the
elements of T are the ancestors of some elements of X and the elements of S are not the
ancestors of some elements of X nor some elements of X themselves. This decomposition
is uniquely determined if once we choose X ⊂ V .
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Now, a structural equation model can be represented by using vectors and matrices as
follows: T

X
S

 =

µt;pa(t)

µx;pa(x)

µs;pa(s)

 +

Att Otx Ots

Axt Axx Oxs

Ast Asx Ass

 T
X
S

 +

ϵt;pa(t)

ϵx;pa(x)

ϵs;pa(s)

 . (1)

Here, µt;pa(t), µx;pa(x) and µs;pa(s) are the means of T , X and S, respectively when the
effects of their parents are removed; Att, Axt, . . . , Ass are the matrices which consist of
the path coefficients; and ϵt;pa(t), ϵx;pa(x) and ϵs;pa(s) are the error terms. We assume that
the means of ϵt;pa(t), ϵx;pa(x), ϵs;pa(s) are all zero values and ϵt;pa(t), ϵx;pa(x), ϵs;pa(s) have the
variance matrices Σtt;pa(t), Σxx;pa(x) and Σss;pa(s) respectively. Furthermore, to avoid cycles
in the structural equations, we assume that the elements in diagonal and upper triangular
portion of the coefficients matrices Att, Axx and Ass are all zero values. This formulation
is possible by sorting the variables by their parent-child relations whenever the structural
equations do not contain cycles. For example, the equations in Example 1 can be formulated
in the form of (1) by letting T = {T}, X = {X1, X2} and S = {S1, S2}, where the matrices
of the path coefficients are as follows:

Att = 0 , Axt =

(
αx1t

αx2t

)
, Axx =

(
0 0

αx2x1 0

)
,

Ast =

(
0

αs2t

)
, Asx =

(
αs1x1 0

0 αs2x2

)
, Ass =

(
0 0

αs2s1 0

)
.

2.2 Total Effects, Means and Variances

For a given structural equation model, the total effect from a variable V1 ∈ V to a variable
V2 ∈ V which is one of the descendants of V1 is defined as the change in V2 that is produced
when V1 is increased by 1 and all error terms are fixed to 0. Therefore the total effect
from V1 to V2 is equal to the derivative of V2 with respect to V1 for the structural equations
eliminating all error terms. The direct effect from V1 to V2 is defined as the path coefficient
from V1 to V2 and it coincides with the partial derivative of V2 with respect to V1 for the
structural equations eliminating all error terms. The indirect effect from V1 to V2 is defined
as the total effect minus the direct effect. For the precise and general definitions of the terms
such as direct, indirect and total effects, see Bollen (1987), Bollen (1989), Sobel (1990) and
Pearl (2009). Let us consider the following example.

Example 2. In Example 1, the total effect from T to S2 is calculated as follows.
We obtain the following equations by eliminating all error terms in structural equations

in Example 1.

T = µt;pa(t),

X1 = µx1;pa(x1) + αx1tT,

X2 = µx2;pa(x2) + αx2tT + αx2x1X1,

S1 = µs1;pa(s1) + αs1x1X1,

S2 = µs2;pa(s2) + αs2tT + αs2x2X2 + αs2s1S1
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From the above equations, we obtain the following relation between S2 and T when all error
terms are fixed to 0.

S2 = µs2;pa(s2) + αs2tT + αs2x2X2 + αs2s1S1

= µs2;pa(s2) + αs2tT + αs2x2(µx2;pa(x2) + αx2tT + αx2x1X1) + αs2s1(µs1;pa(s1) + αs1x1X1)

= µs2;pa(s2) + αs2tT + αs2x2{µx2;pa(x2) + αx2tT + αx2x1(µx1;pa(x1) + αx1tT )}
+αs2s1{µs1;pa(s1) + αs1x1(µx1;pa(x1) + αx1tT )}

= µs2;pa(s2) + αs2x2µx2;pa(x2) + αs2s1µs1;pa(s1) + (αs2x2αx2x1 + αs2s1αs1x1)µx1;pa(x1)

+(αs2t + αs2s1αs1x1αx1t + αs2x2αx2x1αx1t + αs2x2αx2t)T

Therefore the total effect from T to S2 is equal to αs2t + αs2s1αs1x1αx1t + αs2x2αx2x1αx1t +
αs2x2αx2t. The total effect can be decomposed into direct and indirect effects. First, the
direct effect is αs2t which is the path coefficient of T → S2. The remainder αs2s1αs1x1αx1t +
αs2x2αx2x1αx1t + αs2x2αx2t is the indirect effect and the terms αs2s1αs1x1αx1t, αs2x2αx2x1αx1t

and αs2x2αx2t correspond respectively to the effects of the paths T → X1 → S1 → S2,
T → X1 → X2 → S2 and T → X2 → S2 from the front.

Let us denote the total effect from V1 ∈ V to V2 ∈ V by τv2v1 . Furthermore, let us
denote the matrix of the total effects from U ⊂ V to W ⊂ V by τwu where U ∩ W = ∅
and (i, j)-element of τwu is the total effect from Uj ∈ U to Wi ∈ W .

Proposition 1. (Bollen (1987), Sobel (1990)) Assume that the structural equations for V
are written in the equation V = µv;pa(v) + AvvV + ϵv;pa(v). Furthermore, we assume that
(Ivv − Avv) is invertible where Ivv is the identity matrix. Then the matrix of the total effect
τvv is given by τvv = (Ivv − Avv)

−1Avv.

Note that (Ivv − τvv)
−1 always exists in the model of (1). Intuitively, the elements of Avv

represent the direct effects and the elements of A2
vv represent the indirect effects through

one variable. In the same way, the elements of An
vv can be considered as the indirect effects

through n − 1 variable. Therefore, the total effect is equal to Avv + A2
vv + A3

vv + · · · =
(Ivv − Avv)

−1Avv and the above proposition holds.
In the next example, we treat a decomposition of a total effect and introduce some useful

notations for the calculations of means and variances of V which we will treat later in this
section.

Example 3. Assume that six random variables T1, T2, X1, X2, S1 and S2 are generated by
the following linear structural equations:

T1 = µt1;pa(t1) + ϵt1;pa(t1),

T2 = µt2;pa(t2) + αt2t1T1 + ϵt2;pa(t2),

X1 = µx1;pa(x1) + αx1t1T1 + ϵx1;pa(x1),

X2 = µx2;pa(x2) + αx2t1T1 + αx2t2T2 + αx2x1X1 + ϵx2;pa(x2),

S1 = µs1;pa(s1) + αs1t1T1 + αs1x1X1 + ϵs1;pa(s1),

S2 = µs2;pa(s2) + αs2t1T1 + αs2t2T2 + αs2x1X1 + αs2x2X2 + αs2s1S1 + ϵs2;pa(s2).

The path diagram of the above linear structural equations is given in Figure 2. The above
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X1

αx2x1

αs1x1

αs2x2X2

αs2s1

S1

S2

T1

T2

αt2t1

αx2t2

αs2t1

αx1t1

αs1t1

αx2t1 αs2x1

αs2x2X2 S2T2 αx2t2

αs2t2

Figure 2: An example of path diagram with six variables

equations can be formulated in the form of (1) by letting T = {T1, T2}, X = {X1, X2} and
S = {S1, S2}, where the matrices of the path coefficients are as follows:

Att =

(
0 0

αt2t1 0

)
, Axt =

(
αx1t1 0
αx2t1 αx2t2

)
, Axx =

(
0 0

αx2x1 0

)
,

Ast =

(
αs1t1 0
αs2t1 αs2t2

)
, Asx =

(
αs1x1 0
αs2x1 αs2x2

)
, Ass =

(
0 0

αs2s1 0

)
.

In this model, the total effect from T1 to S2 is calculated as follows:

τs2t1 = αs2t1 + αs2s1αs1t1 + αs2t2αt2t1 + αs2x1αx1t1 + αs2x2αx2t1

+αs2x2αx2x1αx1t1 + αs2s1αs1x1αx1t1 + αs2x2αx2t2αt2t1 .

Furthermore, the total effect from T1 to S2 is decomposed into the following eight paths:

T1

αs2t1−−−→ S2,

T1

αs1t1−−−→ S1

αs2s1−−−→ S2,

T1

αt2t1−−−→ T2

αs2T2−−−→ S2,

T1

αx1t1−−−→ X1

αs2x1−−−→ S2,

T1

αx2t1−−−→ X2

αs2x2−−−→ S2, (2)

T1

αx1t1−−−→ X1

αx2x1−−−→ X2

αs2x2−−−→ S2,

T1

αx1t1−−−→ X1

αs1x1−−−→ S1

αs2s1−−−→ S2,

T1

αt2t1−−−→ T2

αx2t2−−−→ X2

αs2x2−−−→ S2.

In the above paths, only the first path T1

αs2t1−−−→ S2 represents the direct effect with the
value of αs2t1 and the other paths represent indirect effects with the values of αs2s1αs1t1 ,
αs2t2αt2t1 , αs2x1αx1t1 , αs2x1αx1t1 , αs2x2αx2t1 , αs2x2αx2x1αx1t1 and αs2s1αs1x1αx1t1 , αs2x2αx2t2αt2t1

respectively.
Now, we decompose the total effect from T1 to S2 into the following two parts.
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X1

αx2x1

αs1x1

αs2x2X2

αs2s1

S1

S2

T1

T2

αt2t1

αx2t2

αx1t1

αx2t1 αs2x1

αs2x2X2 S2T2 αx2t2

Figure 3: The path diagram when the di-
rect paths from T to S are removed.

X1

X2

αs2s1

S1

S2

T1

T2

αt2t1

αs2t1
αs1t1

X2 S2T2

αs2t2

Figure 4: The path diagram when the
paths through X are removed.

1. Let us denote by τs2t1(T → X → S) the total effect from T1 to S2 through X. Because
the last five paths in (2) go through X1 or X2, we obtain

τs2t1(T → X → S) = αs2x1αx1t1 + αs2x1αx1t1 + αs2x2αx2t1

+αs2x2αx2x1αx1t1 + αs2s1αs1x1αx1t1 + αs2x2αx2t2αt2t1 .

This is equal to the total effect from T1 to S2 in the model of Figure 3.

2. Let us denote by τs2t1(T → S) the total effect from T1 to S2 when the effects of X are
removed. From the above decomposition, the first three paths in (2) do not go through
X1 or X2. Therefore, we obtain

τs2t1(T → S) = αs2t1 + αs2s1αs1t1 + αs2t2αt2t1 .

This is equal to the total effect from T1 to S2 in the model of Figure 4.

Next, let us consider the following two matrices

τst(T → X → S)
def.
= (Iss − Ass)

−1Asx(Ixx − Axx)
−1Axt(Itt − Att)

−1,

τst(T → S)
def.
= (Iss − Ass)

−1Ast(Itt − Att)
−1,

where Itt, Ixx and Iss are the identity matrices. Then we obtain

τst(T → X → S)

=

(
1 0

−αs2s1 1

)−1 (
αs1x1 0
αs2x1 αs2x2

)(
1 0

−αx2x1 1

)−1 (
αx1t1 0
αx2t1 αx2t2

)(
1 0

−αt2t1 1

)−1

=

(
1 0

αs2s1 1

) (
αs1x1 0
αs2x1 αs2x2

)(
1 0

αx2x1 1

)(
αx1t1 0
αx2t1 αx2t2

)(
1 0

αt2t1 1

)

=

 αs1x1αx1t1 0{
αs2x1αx1t1 + αs2x1αx1t1 + αs2x2αx2t1

+αs2x2αx2x1αx1t1 + αs2s1αs1x1αx1t1 + αs2x2αx2t2αt2t1

}
αs2x2αx2t2

 ,

7



and

τst(T → S) =

(
1 0

−αs2s1 1

)−1 (
αs1t1 0
αs2t1 αs2t2

)(
1 0

−αt2t1 1

)−1

=

(
1 0

αs2s1 1

)(
αs1t1 0
αs2t1 αs2t2

)(
1 0

αt2t1 1

)
=

(
αs1t1 0

αs2t1 + αs2s1αs1t1 + αs2t2αt2t1 αs2t2

)
.

Note that the (2, 1)-elements of τst(T → X → S) and τst(T → S), which corresponds to
(S2, T1), are equivalent to τs2t1(T → X → S) and τs2t1(T → S). This equivalence can be
justified as Theorem 1.

As in Example 3, we define the following two matrices for the model of (1):

τst(T → X → S)
def.
= (Iss − Ass)

−1Asx(Ixx − Axx)
−1Axt(Itt − Att)

−1, (3)

τst(T → S)
def.
= (Iss − Ass)

−1Ast(Itt − Att)
−1, (4)

where Itt, Ixx and Iss are the identity matrices. The next lemma can be shown by direct
calculation.

Lemma 1. Let B be a square matrix which can be represented as follows:

B =

 B11 O O
B21 B22 O
B31 B32 B33

 ,

where B11, B22, B33 are square matrices. If B11, B22, B33 are non-singular matrices, then the
following equation holds for the inverse matrix of B. B11 O O

B21 B22 O
B31 B32 B33

−1

=

 B−1
11 O O

−B−1
22 B21B

−1
11 B−1

22 O
B−1

33 B32B
−1
22 B21B

−1
11 − B−1

33 B31B
−1
11 −B−1

33 B32B
−1
22 B−1

33



In the next theorem, we obtain the matrix representations of total effects from T to X,
from X to S and from T to S, and justify the decomposition of the total effect which is
treated in Example 3.

Theorem 1.

τxt = [(I − A)−1A]xt = (Ixx − Axx)
−1Axt(Itt − Att)

−1, (5)

τsx = [(I − A)−1A]sx = (Iss − Ass)
−1Asx(Ixx − Axx)

−1, (6)

τst = [(I − A)−1A]st

= (Iss − Ass)
−1Asx(Ixx − Axx)

−1Axt(Itt − Att)
−1 + (Iss − Ass)

−1Ast(Itt − Att)
−1 (7)

= τst(T → X → S) + τst(T → S) (8)

where [(I − A)−1A]uw for U , W ∈ V is the submatrix of (I − A)−1A corresponding to the
rows of U and the columns of W .

8



Proof: By letting B11 = Itt − Att , B21 = −Axt , B22 = Ixx − Axx , B31 = −Ast , B32 =
−Asx , B33 = Iss − Ass in Lemma 1, we obtain

(I − A)−1 =

 (Itt − Att)
−1 O O

(Ixx − Axx)
−1Axt(Itt − Att)

−1 (Ixx − Axx)
−1 O

A∗
st (Iss − Ass)

−1Asx(Ixx − Axx)
−1 (Iss − Ass)

−1

 ,

where

A∗
st = (Iss − Ass)

−1Asx(Ixx − Axx)
−1Axt(Itt − Att)

−1 + (Iss − Ass)
−1Ast(Itt − Att)

−1.

By using the definitions of τst(T → X → S) and τst(T → S) in (3) and (4), and the identity
(I − C)−1C + I = (I − C)−1 for non-singular matrix C, we obtain

(I − A)−1 A =

 (Itt − Att)−1Att O O

(Ixx − Axx)−1Axt(Itt − Att)−1 (Ixx − Axx)−1Axx O

τst(T → X → S) + τst(T → S) (Iss − Ass)−1Asx(Ixx − Axx)−1 (Iss − Ass)−1Ass

 .

Therefore, we obtain the matrix representations (5), (6) and (7), and the decomposition
τst = τst(T → X → S) + τst(T → S).

Note that

τtt = (Itt − Att)
−1Att , τxx = (Ixx − Axx)

−1Axx , τss = (Iss − Ass)
−1Ass (9)

are also obtained from the proof of Theorem 1, and they are also obtained from Proposi-
tion 1. Furthermore, note that, for example, the matrix of total effects τxt needs both the
premultiplication of (Ixx −Axx)

−1 and the postmultiplication of (Itt −Att)
−1. This is a thing

that is different from the result of Proposition 1.
Next, we calculate the means of T , X and S. From structural equation model (1), we

obtain the following equations:

(Itt − Att)T = µt;pa(t) + ϵt;pa(t),

(Ixx − Axx)X = µx;pa(x)AxtT + ϵx;pa(x),

(Iss − Ass)S = µs;pa(s) + AsxX + AstT + ϵs;pa(s).

By multiplying both sides of the above three equations by inverse of (Itt − Att), (Ixx − Axx)
and (Iss − Ass) respectively, we obtain the following equations:

T = (Itt − Att)
−1µt;pa(t) + (Itt − Att)

−1ϵt;pa(t), (10)

X = (Ixx − Axx)
−1µx;pa(x) + (Ixx − Axx)

−1AxtT + (Ixx − Axx)
−1ϵx;pa(x), (11)

S = (Iss − Ass)
−1µs;pa(s) + (Iss − Ass)

−1AstT + (Iss − Ass)
−1AsxX + (Iss − Ass)

−1ϵs;pa(s).

(12)

By taking the means of both sides of (10), (11) and (12), we can compute the means of T ,
X and S, and obtain the following proposition.
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Proposition 2.

E[T ] = (τtt + Itt)µt;pa(t), (13)

E[X] = τxtµt;pa(t) + (τxx + Ixx)µx;pa(x), (14)

E[S] = τstµt;pa(t) + τsxµx;pa(x) + (τss + Iss)µs;pa(s) (15)

Proof: By taking the means of both sides of (10) and using (9), we obtain (13) as follows:

E[T ] = (Itt − Att)
−1µt;pa(t) = (Itt − Att)

−1{Att + (Itt − Att)}µt;pa(t) = (τtt + Itt)µt;pa(t).

Next, by substituting (10) into (11) and taking the means, we obtain (14) as follows:

E[X] = (Ixx − Axx)
−1AxtE[T ] + (Ixx − Axx)

−1µx;pa(x)

= (Ixx − Axx)
−1Axt(Itt − Att)

−1µt;pa(t) + (Ixx − Axx)
−1µx;pa(x)

= τxtµt;pa(t) + (τxx + Ixx)µx;pa(x),

where we are using (5) and (9) in the third equality.
Finally, by substituting (10) and (11) into (12) and taking the means, we obtain (15) as

follows:

E[S] = (Iss − Ass)
−1Asx{(Ixx − Axx)

−1Axt(Itt − Att)
−1µt;pa(t) + (Ixx − Axx)

−1µx;pa(x)}
+(Iss − Ass)

−1Ast(Itt − Att)
−1µt;pa(t) + (Iss − Ass)

−1µs;pa(s)

= {τst(T → X → S) + τst(T → S)}µt;pa(t) + τsxµx;pa(x) + (τss + Iss)µs;pa(s),

= τstµt;pa(t) + τsxµx;pa(x) + (τss + Iss)µs;pa(s),

where we are using (3), (4), (6) and (9) in the second equality and using (8) in the third
equality.

The above proposition says that the means can be decomposed by means of the total
effects. Almost the same things can be said about the variance matrix of T , X and S.

Proposition 3. Assume that Cov[T , ϵx;pa(x)] = Cov[T , ϵs;pa(s)] = Cov[X, ϵs;pa(s)] = O.

V[T ] = (τtt + Itt)Σtt;pa(t)(τtt + Itt)
T , (16)

V[X] = τxtΣtt;pa(t)τ
T
xt + (τxx + Ixx)Σxx;pa(x)(τxx + Ixx)

T , (17)

V[S] = τstΣtt;pa(t)τ
T
st + τsxΣxx;pa(x)τ

T
sx + (τss + Iss)Σss;pa(s)(τss + Iss)

T (18)

Proof:
From (10), we obtain (16) as follows:

V[T ] = (Itt − Att)
−1V[ϵt;pa(t)](Itt − Att)

−T (19)

= (Itt − Att)
−1{Att + (Itt − Att)}V[ϵt;pa(t)]{Att + (Itt − Att)}T (Itt − Att)

−T

= (τtt + Itt)Σtt;pa(t)(τtt + Itt)
T

where we are using (9) and V[ϵt;pa(t)] = Σtt;pa(t) in the third equality.
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Next, from (10), (11), (19) and the assumption Cov[T , ϵx;pa(x)] = O, we obtain (17) as
follows:

V[X] = (Ixx − Axx)
−1AxtV[T ]AT

xt(Ixx − Axx)
−T + (Ixx − Axx)

−1V[ϵx;pa(x)](Ixx − Axx)
−T

= {(Ixx − Axx)
−1Axt(Itt − Att)

−1}V[ϵt;pa(t)]{(Ixx − Axx)
−1Axt(Itt − Att)

−1}T

+(Ixx − Axx)
−1V[ϵx;pa(x)](Ixx − Axx)

−T (20)

= τxtΣtt;pa(t)τ
T
xt + (τxx + Ixx)Σxx;pa(x)(τxx + Ixx)

T ,

where we are using (5), (9) and V[ϵx;pa(x)] = Σxx;pa(x) in the third equality.
Finally, from the assumption Cov[T , ϵs;pa(s)] = Cov[X, ϵs;pa(s)] = O, we have

V[S] = (Iss − Ass)
−1AstV[T ]AT

st(Iss − Ass)
−T

+(Iss − Ass)
−1AstCov[T ,X]AT

sx(Iss − Ass)
−T + (Iss − Ass)

−1AsxCov[X, T ]AT
st(Iss − Ass)

−T

+(Iss − Ass)
−1AsxV[X]AT

sx(Iss − Ass)
−T

+(Iss − Ass)
−1V[ϵs;pa(s)](Iss − Ass)

−T . (21)

Now, from (10) and (11), Cov[T , X]T = Cov[X, T ] can be calculated as follows:

Cov[X,T ] = (Ixx − Axx)
−1AxtV[T ] = (Ixx − Axx)

−1Axt(Itt − Att)V[ϵt;pa(t)] (22)

= τxtΣtt;pa(t)

Therefore, by substituting (19), (20) and (22) into (21), we obtain (18) as follows:

V[S] = {(Iss − Ass)−1Ast(Itt − Att)−1}V[ϵt;pa(t)]{(Iss − Ass)−1Ast(Itt − Att)−1}T

+{(Iss − Ass)−1Asx(Ixx − Axx)−1Axt(Itt − Att)}V[ϵt;pa(t)]{(Iss − Ass)−1Ast(Itt − Att)−1}T

+{(Iss − Ass)−1Ast(Itt − Att)−1}V[ϵt;pa(t)]{(Iss − Ass)−1Asx(Ixx − Axx)−1Axt(Itt − Att)}T

+{(Iss − Ass)−1Asx(Ixx − Axx)−1Axt(Itt − Att)−1}V[ϵt;pa(t)]{(Iss − Ass)−1Asx(Ixx − Axx)−1Axt(Itt − Att)−1}T

+{(Iss − Ass)−1Asx(Ixx − Axx)−1}V[ϵx;pa(x)]{(Iss − Ass)−1Asx(Ixx − Axx)−1}T

+(Iss − Ass)−1V[ϵs;pa(s)](Iss − Ass)−T

= τst(T → S)Σtt;pa(t)τst(T → S)T

+τsx(T → X → S)Σtt;pa(t)τst(T → S)T + τst(T → S)Σtt;pa(t)τsx(T → X → S)T

+τst(T → X → S)Σtt;pa(t)τst(T → X → S)T

+τsxΣxx;pa(x)τ
T
sx

+(τss + Iss)Σss;pa(s)(τss + Iss)T

= τstΣtt;pa(t)τ
T
st + τsxΣxx;pa(x)τ

T
sx + (τss + Iss)Σss;pa(s)(τss + Iss)T ,

where we are using (3), (4), (5), (6), (9), V[ϵt;pa(t)] = Σtt;pa(t), V[ϵx;pa(x)] = Σxx;pa(x) and
V[ϵs;pa(s)] = Σss;pa(s) in the second equality, and (8) in the third equality.

In the following, we only consider the case where the assumption of Proposition 3 holds,
i.e. Cov[T , ϵx;pa(x)] = Cov[T , ϵs;pa(s)] = Cov[X, ϵs;pa(s)] = O.

2.3 Interventions to Structural Equation Models

An intervention to a structural equation model means changing structure of the structural
equation model. Throughout this paper, we consider only intervention to the structures
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between T and X in the model of (1), (for more general case of intervention, see Pearl
(2009)). In this case, only the elements of X are directly affected by the intervention and
are called treatment variables. Of course, the elements of S are also affected indirectly by
the intervention. The elements of T are called covariates and the elements of S are called
output variables. The effects caused by the intervention are called intervention effects. For
example, the changes on the means of the output variables S after the intervention are
intervention effects.

Assume that µx;pa(x), Axt and ϵx;pa(x) in (1) are changed into µ̃x;pa(x), Ãxt and ϵ̃x;pa(x),
respectively, by the intervention, where ϵ̃x;pa(x) is the column vector of error terms that their

means are all zero values and the variance matrix is Σ̃xx;pa(x). Furthermore, we assume that
the assumption of Proposition 3 again holds after the intervention, i.e. Cov[T , ϵ̃x;pa(x)] =
Cov[T , ϵs;pa(s)] = Cov[X, ϵs;pa(s)] = O. Then the structural equation for X is changed from

X = µx;pa(x) + AxxX + AxtT + ϵx;pa(x)

to

X = µ̃x;pa(x) + AxxX + ÃxtT + ϵ̃x;pa(x). (23)

Let us define the following matrices.

τ̃st(T → X → S)
def.
= (Iss − Ass)

−1Asx(Ixx − Axx)
−1Ãxt(Itt − Att)

−1, (24)

τ̃st
def.
= τ̃st(T → X → S) + τst(T → S) (25)

The elements of τ̃st are the total effects from T to S after the intervention of (23). Note
that τst(T → S) does not change after the intervention of (23).

Let us denote by Ẽ[S] and Ṽ[S] the means and the variances of S after the intervention
of (23). Then the following corollary holds immediately from Proposition 2 and 3.

Corollary 1. After the intervention of (23), the mean vector of S is given by

Ẽ[S] = τ̃stµt;pa(t) + τsxµ̃x;pa(x) + (τss + Iss)µt;pa(t).

Furthermore, assume that Cov[T , ϵ̃x;pa(x)] = Cov[T , ϵs;pa(s)] = Cov[X, ϵs;pa(s)] = O, then the
variance matrix of S after the intervention of (23) is given by

Ṽ[S] = τ̃stΣtt;pa(t)τ̃
T
st + τsxΣ̃xx;pa(x)τ

T
sx + (τss + Iss)Σss;pa(s)(τss + Iss)

T . (26)

In the following sections, we treat only the intervention by which the error terms of X
do not change i.e. Σ̃xx;pa(x) = Σxx;pa(x).

3 Applications of Mathematical Optimization Proce-

dures to Intervention Effects

In Section 3.1, we first consider intervention to the path coefficients τ̃st to reduce the variances
of the output variables. Next, in Section 3.2, we treat intervention to the means µ̃x;pa(x) to
adjust the mean values of output variables.
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3.1 Application of Mathematical Optimization Procedures to In-
tervention Effects for Variances

For a given structural equation model, it often happens that it is necessary to intervene
the model to reduce the variances of the output variables. In structural equation models,
this can be done by changing the values of the path coefficients τ̃st by intervention. In this
section, we show that an algorithm to obtain the intervention method which minimizes the
weighted sum of the variances can be formulated as a convex quadratic programming. This
formulation allows us to impose the boundary conditions for the intervention, so that we can
find the practical solutions.

Let us denote by Y elements of interest in S , by ny the dimension of Yi, and by Yi

the i-th element of Y . The variance of Yi after the intervention of (23), which we denote
by Ṽ[Yi], is the diagonal element of Ṽ[S] in relation to Yi. Then the minimization of the
weighted sum of the variances of Y , under constraint that the elements of Ãxt have upper
and lower bounds can be formulated as follows:

Minimize
Ãxt

ny∑
i=1

κiṼ[Yi] (27)

subject to AL ≤ Ãxt ≤ AU . (28)

where κ1, . . . , κny are the weights, and AL and AU are the matrices, the elements of which

are the lower and upper bounds for Ãxt. We assume that these values are determined
appropriately in advance.

Now we formulate the above problem as a convex quadratic programming.
At first, we neglect the terms τsxΣ̃xx;pa(x)τ

T
sx and (τss + Iss)Σss;pa(s)(τss + Iss)

T in the

variance matrix of (26), because they are not changed by changing Ãxt. Let us define the
following functions:

fyi
(Ãxt)

def.
= τ̃yitΣtt;pa(t)τ̃

T
yit

= {τ̃yit(T → X → S) + τyit(T → S)}Σtt;pa(t){τ̃yit(T → X → S) + τyit(T → S)}T ,

(i = 1, . . . , ny), (29)

where τ̃yit(T → X → S) and τyit(T → S) are the row vectors of τ̃st(T → X → S) and
τst(T → S) in relation to Yi. Then the minimization of the objective function in (27) is
equivalent to

Minimize
Ãxt

ny∑
i=1

κifyi
(Ãxt).

Remember that the definition of τ̃st(T → X → S) is τ̃st(T → X → S) = (Iss −
Ass)

−1Asx(Ixx − Axx)
−1Ãxt(Itt − Att)

−1 in (24). By using vec operator, Kronecker prod-
uct ⊗ and (36) (see Appendix A.1), the column vector τ̃yit in (29) can be formulated as
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follows:

τ̃ T
yit

= {τ̃yit(T → X → S) + τyit(T → S)}T

=
{

[(Iss − Ass)
−1]yisAsx(Ixx − Axx)

−1Ãxt(Itt − Att)
−1

}T

+ τyit(T → S)T

= vec
(
[(Iss − Ass)

−1]yisAsx(Ixx − Axx)
−1Ãxt(Itt − Att)

−1
)

+ τyit(T → S)T

=
[{

(Itt − Att)
−1

}T ⊗
{
[(Iss − Ass)

−1]yisAsx(Ixx − Axx)
−1

}]
vec(Ãxt) + τyit(T → S)T ,

=
[{

(Itt − Att)
−1

}T ⊗ τyix

]
vec(Ãxt) + τyit(T → S)T , (30)

where [(Iss −Ass)
−1]yis is the row vector of (Iss −Ass)

−1 in relation to Yi, and τyix is the row
vector of τsx in relation to Yi (see (6) of Theorem 1). Let us define the following matrices
and column vectors:

Qi
def.
=

{
(Itt − Att)

−1
}T ⊗ τyix

=
{
(Itt − Att)

−1
}T ⊗

{
[(Iss − Ass)

−1]yisAsx(Ixx − Axx)
−1

}
, (i = 1, . . . , ny),

γ
def.
= vec(Ãxt),

ri
def.
= τyit(T → S)T =

{
[(Iss − Ass)

−1]yisAst(Itt − Att)
−1

}T
, (i = 1, . . . , ny).

By using these definitions and (30), the column vector τ̃yit in (29) can be represented as
follows:

τ̃ T
yit

= Qiγ + ri. (31)

Hence, we obtain

fyi
(Ãxt) = (Qiγ+ri)

T Σtt;pa(t)(Qiγ+ri) = γT
(
QT

i Σtt;pa(t)Qi

)
γ+

(
2rT

i Σtt;pa(t)Qi

)
γ+rT

i Σtt;pa(t)ri,

and

ny∑
i=1

κifyi
(Ãxt) = γT

(
ny∑
i=1

κiQ
T
i Σtt;pa(t)Qi

)
γ +

(
ny∑
i=1

2κir
T
i Σtt;pa(t)Qi

)
γ +

ny∑
i=1

κir
T
i Σtt;pa(t)ri

Note that the third term in the right-hand side of the above equation is constant with respect
to γ and negligible in the minimization problem of (27). Therefore, the minimization problem
of (27) under the constraint of (28) can be represented as the following convex quadratic
programming:

Minimize
‚

γT

(
ny∑
i=1

κiQ
T
i Σtt;pa(t)Qi

)
γ +

(
ny∑
i=1

2κir
T
i Σtt;pa(t)Qi

)
γ

(32)

subject to αL ≤ γ ≤ αU .

where αL
def.
= vec(AL) and αU

def.
= vec(AU).
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The Karush-Kuhn-Tucker (KKT) conditions of the problem of (32) are given as follows:(
ny∑
i=1

2κiQ
T
i Σtt;pa(t)Qi

)
γ +

(
ny∑
i=1

2κir
T
i Σtt;pa(t)Qi

)T

− ϕL + ϕU = 0,

ϕL ≥ 0 , ϕU ≥ 0,

−γ + αL ≤ 0 , γ − αU ≤ 0,

ϕT
L(−γ + αL) = 0 , ϕT

U(γ − αU) = 0,

where the elements of ϕL and ϕU are Lagrange multipliers (for more detail see Rockafellar
(1996)). Assume that the constraints in (32) satisfy Slater’s constraint qualification, i.e.
αL < αU holds. Then γ̄ is optimal if and only if there exist ϕ̄L and ϕ̄U which satisfy the
above Karush-Kuhn-Tucker conditions for γ̄. Notice that even if {αL}i = {αU}i holds for
some i’s, the constraints in (32) satisfy Slater’s constraint qualification by considering the
inequality constraints as equality constraints.

Example 4. Let us consider a case where Y = {Y1}, τy1x = [(Iss − Ass)
−1]y1sAsx(Ixx −

Axx)
−1 ̸= 0, Σtt;pa(t) is regular, and constraint is not imposed on Ãxt, i.e.

ϕL = 0 , ϕU = 0 , αL → −∞ , αU → ∞.

Then the Karush-Kuhn-Tucker conditions in this case are given as follows:(
2QT

1 Σtt;pa(t)Q1

)
γ +

(
2rT

1 Σtt;pa(t)Q1

)T
= 0

⇔ QT
1 Σtt;pa(t)(Q1γ + r1) = 0

⇔ Q1γ + r1 = 0 (Q1 is regular from the assumption τy1x ̸= 0)

⇔ τ̃yit = τ̃yit(T → X → S) + τyit(T → S) = 0. (See (31) and (25).)

Remember that the first term τ̃y1t(T → X → S) in the last equation means the total effect
from T to Y1 through X after intervention and the second term τy1t(T → S) means the total
effect from T to Y1 which does not go through X. Therefore, if the total effect from T to Y1

through X after intervention offsets the total effect from T to Y1 which does not go through
X, then the Karush-Kuhn-Tucker conditions hold and the variance of Y1 is minimized.

3.2 Application of Mathematical Optimization Procedures to In-
tervention Effects for Means

We consider intervention to the means µ̃x;pa(x). From proposition 2, we obtain the mean of
Yi as follows:

E[Yi] = τyitµt;pa(t) + τyixµ̃x;pa(x) + [(τss + Iss)]y1sµs;pa(s),

where [(τss + Iss)]y1s is the row vector of (τss + Iss) in relation to Yi.
Suppose that we want to adjust the mean of Yi to a standard mi by intervention which

changes µ̃x;pa(x). Then the minimization of weighted squared sum of the deviations (E[Y1]−
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m1), . . . , (E[Yny ]−mny), under constraint that the elements of µ̃x;pa(x) have upper and lower
bounds can be formulated as follows:

Minimize
—̃x;pa(x)

ny∑
i=1

λi(Ẽ[Yi] − mi)
2 (33)

subject to µL ≤ µ̃x;pa(x) ≤ µU . (34)

where λ1, . . . , λny are the weights, and µL and µU are the matrices, the elements of which
are the lower and upper bounds for µ̃x;pa(x). We assume that these values are determined
appropriately in advance.

From Proposition 2, we obtain

(Ẽ[Yi] − mi)
2 = {(τyitµt;pa(t) + τyixµ̃x;pa(x) + [(τss + Iss)]y1sµs;pa(s)) − mi}2

= µ̃T
x;pa(x)(τ

T
yix

τyix)µ̃x;pa(x)

+
[
2{(τyitµt;pa(t) + [(τss + Iss)]y1sµs;pa(s) − mi}τyix

]
µ̃x;pa(x)

+{τyitµt;pa(t) + [(τss + Iss)]y1sµs;pa(s) − mi}2

Note that the third term of the last equation does not depend on µ̃x;pa(x) and only the first
and second terms are needed for the minimization in (33). Therefore, the minimization
problem of (33) under the constraint of (34) can be represented as the following convex
quadratic programming:

Minimize
—̃x;pa(x)

µ̃T
x;pa(x)(τ

T
yix

τyix)µ̃x;pa(x) +
[
2{(τyitµt;pa(t) + [(τss + Iss)]y1sµs;pa(s) − mi}τyix

]
µ̃x;pa(x)

subject to µL ≤ µ̃x;pa(x) ≤ µU .

4 Numerical Experiment

T2 = log

(
Number of

submissions

)

X = log

(
Acceptance

rate

)

Y = log

(
Number

of pages

)

αyt2 = 1

αyx = 1

T1 = log





Number of

advertising

campaign






αt2t1 =
1

10

α̃xt1

α̃xt2

Figure 5: The path diagram of the structural equation model of (35).

To illustrate how the two algorithms in Section 3 work, we consider the following toy
model. The model used in this numerical experiment is just a toy. It may contain some
inappropriate formulations and should not be taken seriously.
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Suppose that an editor of a journal which is published once a year wanted to stabilize
the number of pages of the journal. The editor observed the following four variables:

• T1 - the random variable of the logarithm of the number of advertising campaign for
the journal;

• T2 - the random variable of the logarithm of the number of submissions to the journal;

• X - the random variable of the logarithm of the acceptance rate of the journal;

• Y - the random variable of the logarithm of the number of pages of the journal.

The editor can control the borderline whether or not to accept a manuscript graded by
some referees. However, the acceptance rate is random variable because the grades of the
manuscripts submitted to the journal are determined by referees. Furthermore, the advertis-
ing campaign is not the editor’s job and the editor can not control. To these variables, the
editor constructed a simplified structural equation model which is represented as the path
diagram in Figure 5 and the following equations:

T1 = µt1;pa(t1) + ϵt1;pa(t1),

T2 = µt2;pa(t2) + αt2t1T1 + ϵt2;pa(t2),

X = µx;pa(x) + αxt1T1 + αxt2T2 + ϵx;pa(x), (35)

Y = µy;pa(y) + αyt2T2 + αyxX + ϵy;pa(y),

where

• µt;pa(t) =
(

log 10
log 100

) (
Average number of advertising campaign is 10,
and that of submissions is 100 where the effect of the parent is removed

)
;

• µx;pa(x) = log 3
10

, (Average of acceptance rate is 3
10

when the effect of T are removed);

• µy;pa(y) = log 10, (Average number of pages for each manuscript is 10);

• ϵt1;pa(t1), ϵt2;pa(t2), ϵx;pa(x) and ϵy;pa(y) ∼ N

(
0,

(
1√
10

)2
)

;

• αt2t1 = 1
10

and αyt2 = αyx = 1.

The last equation in (35) means that the number of pages of the journal is approximately
equal to {Average number of pages for each manuscript} × {Number of submissions} ×
{Acceptance rate}. At this time, the path coefficients from T to X were αxt1 = αxt2 = 0
and so the editor considered to intervene these two coefficients α̃xt1 and α̃xt2 to minimize the
variance of the number of the pages. From Section 3.1, the problem of minimization of the
variance can be represented as the following quadratic programming:

Minimize
α̃xt1 , α̃xt2

(α̃xt1 α̃xt2)

{
1
10

·
(

1 1
10

1
10

1 + 1
100

)}(
α̃xt1

α̃xt2

)
+

{
2
10

· ( 1
10

101
100

)
} (

α̃xt1

α̃xt2

)
subject to α̃xt1 ≥ − 2

10
,

α̃xt2 ≥ − 2
10

,
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where the constraints for α̃xt1 and α̃xt2 were determined by the editor’s inspiration to avoid
too strong dependency between T and X. By computing the above quadratic programming,
the editor obtained the optimal solution ᾱxt = (−0.08, −0.20) and the variance of Y reduced
to 0.264 from 0.301. However, the editor noticed that the mean of the number of pages of
the journal under the optimal solution ᾱxt = (−0.08, −0.20) is 119.4322 and thought that it
might be too small. Next, the editor designated the appropriate amount for the mean of the
number of pages of the journal as 200 and considered to achieve it by intervention to µ̃x;pa(x).
From Section 3, this problem can be formulated as the following quadratic programming:

Minimize
µ̃x;pa(x)

µ̃x;pa(x) · 1 · µ̃x;pa(x) +
[
2 ·

{((
1
10 1

)
+ (ᾱxt1 ᾱxt2)

(
1 0
1
10 1

))(
log 10
log 100

)
+ log 10 − log 200

}]
µ̃x;pa(x)

subject to µ̃x;pa(x) ≤ log 5
10 ,

where the constraint for µ̃x;pa(x) prevents the acceptance rate from exceeding 0.5. By
computing the above quadratic programming, the editor obtained the optimal solution
µ̄x;pa(x) = −0.6931472 = log 5

10
. Then, the mean of the number of the pages under the

optimal solutions ᾱxt = (−0.08, −0.20) and µ̄x;pa(x) = −0.6931472 = log 5
10

is the 199.0536.
As a result, the editor succeeded in minimizing the variance of the number of pages of

the journal and adjusting the mean to the appropriate amount.
What should the editor do, if the editor wants to change the mean of the number of

pages with the minimized variance? In this case, all the editor has to do is to re-intervene
to µ̃x;pa(x). The interventions to the path coefficients α̃xt1 and α̃xt2 are not needed because
the intervention to µ̃x;pa(x) changes the mean without changing the minimized variance,
(though, if the constraint for µ̃x;pa(x) is too strong, then the interventions to α̃xt1 and α̃xt2

might be needed to adjust the mean). This is the reason why we separate the problem into
two algorithms as in Section 3. Furthermore, note that this two-step procedure has been
used in the area of statistical quality control. Taguchi (1987) recommended the two-step
optimization to solve the design optimization problem, in which we first maximize the S/N
ratio and adjust the mean on target in the next step.

5 Conclusion

We have introduced matrix representation of total effects and the idea of their decomposition.
Then, we have shown that the problems to obtain the optimal intervention that minimizes
the variances and to adjust the means can be formulated as convex quadratic programmings.

In Theorem 3, we assume that Cov[T , ϵx;pa(x)] = Cov[T , ϵs;pa(s)] = Cov[X, ϵs;pa(s)] = O.
However, this assumption does not hold if there are latent variables that affect both T and
X, or both T and S, or both X and S. In future work, we intend to extend our results to
the case where the assumption of Theorem 3 does not hold.

Throughout this paper, we treat only the case that the structural equation model which
represents the true relationships between real objects is given in advance. Is the method
introduced in this paper not useful if we do not have the true model? We think the answer
is yes. If the given model is not true, then the intervention effect computed by using the
method in this paper and the intervention effect observed in real mostly have different
values. Therefore, the intervention and the computation of the intervention effect based on
the given model can be used for verification whether the model is true or not. We also intend
to consider this subject in future work.
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A Appendix

A.1 Kronecker Product and Vec Operator

Let B = {bij} = [b1 . . . bn] be an m × n matrix and C be a p × q matrix.
The mp × nq matrix

B ⊗ C
def.
=


b11C b12C · · · b1nC
b21C b22C · · · b2nC

...
...

. . .
...

bm1C bm2C · · · bmnC


is called the Kronecker product of B and C.

The vec operator for a matrix is defined as follows.

vec(B)
def.
=

b1
...

bn


Let D be an n × p matrix. The following relation holds.

vec(BDC) = (CT ⊗ B)vec(D) (36)
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